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Colorectal Cancer Stem Cell States Uncovered by
Simultaneous Single-Cell Analysis of Transcriptome
and Telomeres

Hua Wang, Peng Gong, Tong Chen, Shan Gao, Zhenfeng Wu, Xiaodong Wang, Jie Li,
Sadie L. Marjani, José Costa, Sherman M. Weissman,* Feng Qi,* Xinghua Pan,*
and Lin Liu*

Cancer stem cells (CSCs) presumably contribute to tumor progression and
drug resistance, yet their definitive features have remained elusive. Here,
simultaneous measurement of telomere length and transcriptome in the same
cells enables systematic assessment of CSCs in primary colorectal cancer
(CRC). The in-depth transcriptome profiled by SMART-seq2 is independently
validated by high-throughput scRNA-seq using 10 × Genomics. It is found
that rare CSCs exist in dormant state and display plasticity toward cancer
epithelial cells (EPCs) that essentially are presumptive tumor-initiating cells
(TICs), while both retaining the prominent signaling pathways including WNT,
TGF-𝜷, and HIPPO/YAP. Moreover, CSCs exhibit chromosome copy number
variation (CNV) pattern resembling cancer EPCs but distinct from normal
stem cells, suggesting the phylogenetic relationship between CSCs and
cancer EPCs. Notably, CSCs maintain shorter telomeres and possess minimal
telomerase activity consistent with their nonproliferative nature, unlike cancer
EPCs. Additionally, the specific signature of CSCs particularly NOTUM,
SMOC2, BAMBI, PHLDA1, and TNFRSF19 correlates with the prognosis of
CRC. These findings characterize the heterogeneity of CSCs and their linkage
to cancer EPCs/TICs, some of which are conventionally regarded as CSCs.
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1. Introduction

A subset of cancer cells named as can-
cer stem cells (CSCs) presumably are ca-
pable of self-renewal to initiate and main-
tain tumor growth, contribute to tumor re-
currence and are resistant to conventional
chemotherapy.[1] It also evokes the attrac-
tive possibility of elimination of malig-
nant tumors by defining and targeting the
critical requirements of CSC population.[2]

CSCs in most human tumors, including
colorectal cancer (CRC), traditionally are
identified by cell surface markers, such as
CD133/PROM1,[3] CD44,[4] or LGR5.[5] Yet,
stem cell hierarchy may be much more
heterogeneous than previously appreciated,
complicating the identification and eradica-
tion of CSCs.[1c,6] Identification of CSC pop-
ulations based on current bulk cell analy-
ses could miss subsets of residual CSCs that
are typically rare and not easily isolated.[7]
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Thus far, various definitions about CSCs, CSC-like cells, or
tumor-initiating cells (TICs) have been proposed in various
tumors.[3b,c,8] Hence, tumors may contain a more complicated
composition of CSC-like cells or precursor cells that contribute
to their tumor-propagating potential than previously thought.

Single-cell transcriptome techniques enable unbiased charac-
terization of the cellular diversity of tissues and allow identifi-
cation of distinct cell subtypes in cancer, including CSCs.[1b,7,9]

For instance, single-cell analysis uncovered that CSCs fuel the
growth of oligodendrogliomas, and that these CSCs show signs
of proliferation, while other cancer cells do not.[9] A small num-
ber of CSCs in leukemia are highly resistant to treatment and
are likely responsible for disease recurrence when the treatment
is stopped.[7] Single-cell quantitative polymerase chain reaction
(qPCR),[10] and single-cell RNA-sequencing (scRNA-seq) have re-
vealed the heterogeneity and distinct subpopulations within hu-
man CRC.[11] Moreover, single-cell analyses by RNA sequencing,
methylation profiling and mutation characterization provide fur-
ther insights into intratumoral heterogeneity and the epigenetic
dynamics of human CRCs.[12]

Telomeres are highly repetitive ribonucleoprotein structures
that protect chromosome ends and maintain genomic stability,
essential for cell proliferation and immortalization.[13] Dysreg-
ulation of telomeres and telomerase, the enzyme responsible
for maintaining telomeres, results in aging as well as cancer.[13]

Intriguingly, while telomere shortening and heterogeneity are
found in CRC and other tumors,[14] long telomeres are claimed to
be essential for proliferation of cancer cells.[13c,15] It is likely that
telomere analysis based on bulk cell samples may not be able to
distinguish various subcell types in a heterogeneous tumor tis-
sue. Hence it remains elusive whether CSCs have long or short
telomeres, and whether they are proliferative or quiescent. The
transcriptome features together with the telomere status of cell
subpopulations and particularly potential CSCs in human CRC
have not been characterized at single-cell level.

Single-cell telomere length measurement by qPCR[16] coupled
with single-cell transcriptome analysis in the same cell,[17] pro-
vide new opportunity to characterize specific global transcription
profile and the telomere length in the individual cell. By tak-
ing advantage of simultaneous analysis of the transcriptome and
telomere length in the same cell, we investigated the association
of telomere length and transcriptome in the same cell of primary
CRC tumors following enrichment of CSCs by fluorescence-
activated cell sorting (FACS) using known cell surface markers
for “CSCs,” and independently validated the outcome by scRNA-
seq on 10 × Genomics. We found that in native CRC tissue,
CSCs are dormant, are indeed rare, unexpectedly maintain short
telomeres, and can be characterized by high expression of spe-
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cific genes. Furthermore, the CSCs can be transformed to can-
cer EPCs that express telomerase and acquire longer telomeres,
which are required for tumor proliferation.

2. Results

2.1. Profiling of Human Primary CRC at Single-Cell Level by
Integrated Analysis of Telomere Length and Transcriptome

Freshly resected primary tumors from eight CRC patients who
were treatment-naïve at the time of surgery (Table S1, Support-
ing Information), were dissociated into single cells. The single
cells were processed for single-cell analysis of transcriptome and
telomere length in the same cell based on the single-cell telom-
ere length and transcriptome sequencing method (scT&R-seq)
(Figure S1a, Supporting Information).[17] FACS by several com-
monly known surface markers for CSCs in CRC was employed
to enrich potential CSCs. Dead cells initially were excluded by
7-AAD+ (Figure S1b, Supporting Information) prior to sorting
potential CSCs by canonical and widely reported CSC markers
of CRCs, including CD44, CD133/PROM1, and LGR5 (Figure
S1c, Supporting Information). As sphere formation can also en-
rich potential CSCs,[18] the cells isolated from sphere formation
(Sphere) and their progenitor suspensions (Adhere) were also
included for single-cell analysis (Figure S1d, Supporting Infor-
mation). After RNA-seq quality control (QC) filtration of all 831
individual cells sequenced (Figure S1d, Supporting Information
and see the Experimental Section), 693 individual cells were re-
tained with high quality scRNA-seq data for subsequent analy-
sis (Figure S1d, Supporting Information). Approximately 600 000
paired-end mapped reads on average were obtained from each
cell (Figure S2a,b, Supporting Information). The average num-
ber of genes expressed in each cell was about 4100 (Figure S2c,d,
Supporting Information). The number of transcripts in each cell
from different patients (batch) were similar (Figure S2b,d, Sup-
porting Information). Major cell types in CRCs were classified
based on their transcriptome profile.

To explore the cellular composition of CRCs, we applied princi-
pal component analysis (PCA) on variably expressed genes across
all cells by Seurat (Figure S2e, Supporting Information).[19] The
top 20 significant principal components were used for cluster
analysis (Figure S2f, Supporting Information). We did not ob-
serve batch effects in these clusters, including raw sequencing
depth (Figure S2g, Supporting Information), human genome
mapping ratio (hg38) (Figure S2h, Supporting Information) and
CRC patient samples (Figure S2i, Supporting Information), in-
dicating minimal biases due to potential batch effects, and thus
ensure the classifications were appropriate.

2.2. Single-Cell Profiling Distinguishes CSCs from Non-CSCs in
CRC

By reducing the dimensionality of the data using t-SNE (t-
distributed stochastic neighbor embedding), we identified 10 dis-
tinct clusters (Figure 1a), including T cells (TCs), B cells (BCs),
mesenchymal cells (MSCs), endothelial cells (EDCs), epithelial
cells (EPCs), macrophages (Ms), dendritic cells (DCs), mast cells
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(MCs), CSCs, and cancer-associated fibroblasts (CAFs). These
10 distinct subpopulations were further systematically defined
based on the canonical markers for distinct cell types (Figure 1b;
Tables S2 and S3, Supporting Information). In addition, gene on-
tology (GO) analysis of highly expressed genes in each subpopu-
lation (P< 0.01, Table S2, Supporting Information), also matched
the tissue-specific functions of each cell type (Table S4, Support-
ing Information). For example, the top GO enrichment (Biologi-
cal Process) hits of BCs include B cell activation, leukocyte differ-
entiation, and adaptive immune response. Top GO hits of EPCs
include morphogenesis of a polarized epithelium and EPC devel-
opment. Examination of canonical marker genes also revealed
major cell populations when plotted on the t-SNE plot (Figure
S3a, Supporting Information), further demonstrating the accu-
racy of clustering and robustness of our data.

Indeed, cells in the CSC cluster highly expressed known CSC
markers PROM1/CD133 and LGR5, as well as the stemness re-
lated gene ERBB3, and SOX family genes (SOX4, SOX6, and
SOX9) (Figure 1b). The crypt stem cell marker LGR5 also marks
a subpopulation of adenoma cells that fuel the growth of es-
tablished intestinal adenomas by lineage retracing.[20] The nor-
mal intestinal stem cell marker genes BMI1[21] and LRIG1[22]

were also highly expressed in CSCs and EPCs (Figure S3b,
Supporting Information). In addition, we observed rare CAFs
in the niche (Figure 1a), which can promote cancer formation
and chemo-resistance by sustaining cancer stemness.[23] Further-
more, previously identified CAF markers, CXCL14,[24] CALD1,[25]

and IGFBP7,[25] were highly expressed in CAFs also based on our
RNA-seq data (Figure 1b).

2.3. New Feature of CRC CSCs Sorted by Known CSC Markers

To efficiently capture and distinguish potential features of CSCs
from non-CSCs in primary tumors, we pooled all cells from
maker positive and negative populations for cell cluster analy-
sis (Figure S1d, Supporting Information). Of these gated cells
following FACS isolation, CSC positive markers enriched more
CSCs, while CSC marker negative cells enriched more TCs,
BCs, and EDCs (Figure 1c,d). CSCs mostly were enriched from
CD44+CD133+ and CD44−CD133+ sorted cell population (Fig-
ure S1d, Supporting Information). However, cells from the

spheres only clustered to EPCs and EDCs, and none to CSCs
(Figure S1d, Supporting Information). These results are also sup-
ported by the findings that tumorspheres can be derived from
both cancer cell lines[26] and nonstem cells (such as stem cell
transit-amplifying progeny) of cancer tissues, whereas normal
quiescent stem cells fail to form tumor spheres.[18]

It is worth noting that even though we employed FACS and
sorted the cells dissociated from the primary CRC tumors to en-
rich CSCs by commonly used CSC surface markers, the propor-
tion of CSCs was still low (≈3.9%) in the whole cell population,
and LGR5+ cells were still heterogeneous (Figure S1d, Support-
ing Information), further highlighting the importance and ne-
cessity of single-cell analysis, which presumably can capture the
unique features of rare CSCs in a tumor.

2.4. Signaling Pathways and Marker Genes of CSCs in CRC

To facilitate the quantitative evaluation of stemness in each
cell type, we defined the “stemness score”[9] across all single
cells, calculated as the average relative expression of solid cancer
stemness-related genes (Table S5, Supporting Information), and
these stemness-related genes also were listed in CRC reported
early.[27] Indeed, CSCs were endowed with high stemness score
signatures, and interestingly EPCs also exhibited stemness signa-
tures but to a lesser extent. In contrast, terminally differentiated
B-cells (BCs) displayed the lowest stemness score (Figure 1e).

Furthermore, we performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis to character-
ize the distinct pathways enriched in CSCs (Table S6, Support-
ing Information). The top enriched terms included signaling
pathways regulating pluripotency of stem cells as expected, as
well as adherence and tight junctions, canonical WNT, HIPPO,
TGF-𝛽 signaling pathway, and CRC related pathways (Figure 1f).
These pathways play a key role in maintaining the stemness
and undifferentiated state of CSCs in CRC, such as epithelial–
mesenchymal transition (EMT) linked to cancer progression and
metastasis.[25,28] Ligand CTNNB1 (𝛽-CATENIN), effectors LEF1
and TCF7L2, WNT targets AXIN2 and MMP7, WNT recep-
tors such as LRP5, LRP6, FZD1, FZD3, and FZD6 were highly
expressed in CSCs (Figure 1g). The WNT signaling pathway
regulates the development of stem cells, including CSCs.[28b]

Figure 1. Classification of subpopulations in primary CRC tumors and molecular signature of CSCs delineated by single-cell transcriptome analysis. a)
Unsupervised graph-based clustering of single cell RNA-seq dataset projected onto a t-SNE plot displaying distinct subpopulations of CRC tumors. A
total of 693 cells were clustered into 10 distinct groups. Each point represents an individual cell. Cell clusters were labeled and colored by subcell type
names: TCs, T cells; MSCs, mesenchymal cells; BCs, B cells; EDCs, endothelial cells; EPCs, epithelial cells; Ms, macrophages; DCs, dendritic cells; MCs,
mast cells; CSCs, cancer stem cells; CAFs, cancer-associated fibroblasts. b) Heatmap of top representative marker genes for each cluster identified by
Seurat. Top marker genes were determined by ROC test (see the Experimental Section). Gene expression profiles of selected marker genes were used
to assign cell classification. Columns represent individual cells; rows represent genes. Gene expression clusters were generated in Seurat using scaled
normalization data. Identified cluster names are indicated at the bottom. c) t-SNE plot showing distribution of cells sorted by known cell surface CSC
positive markers, including CD44, CD133/PROM1 and LGR5. 693 single cells are plotted. Each point represents a cell. The green and blue dots represent
FACS+ and FACS− cells, respectively. d) t-SNE plot showing distribution of cells that are negative for markers, CD44, CD133/PROM1, and LGR5. 693
single cells are plotted. Each point represents a cell. The green and blue dots represent FACS− and FACS+ cells, respectively. e) Density distribution of
stemness score in subpopulations. The “stemness score” signatures were calculated by the average relative expression level of a key stemness related
gene set, previously reported and validated.[9] f) KEGG enrichment of highly expressed genes in CSCs with AUC>0.8. Selected 8 pathways ranked by P-
value are shown. g) Expression of key markers and signaling pathways of CSCs. Dot plots of functionally relevant genes involved in WNT pathway, HIPPO
pathway, TGF-𝛽 pathway and stemness from KEGG enrichment analysis. CTNNB1 also known as 𝛽-Catenin. The color key from navy to red indicates
low to high average gene expression level, respectively. The dot size indicates percentage of cells expressing a certain marker. h) Violin plot showing
expression distribution of known commonly used CSC marker genes (PROM1, CD44, LGR5) in each subpopulation. i) Violin plot of specifically enriched
genes for CSCs. These genes show high level of Area Under the Curve values (AUC > 0.9). For each gene, the AUC value (ROC test) corresponds to the
“classification power.” AUC values ranging from 0 for random, to 1 for perfect classifier for a given cluster. Cells are color-coded by subpopulations.
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Figure 2. Similarities and differences among CSCs, EPCs_A and EPCs_B. a) Unsupervised hierarchical clustering of the 10 clusters based on the average
gene expression of single cells in each subpopulation. Each node represents a subpopulation. Number of cells analyzed for each subpopulation are shown
on the right side. b) t-SNE plot showing distinct subpopulations of EPCs. EPCs could be distributed into two subpopulations under high resolution (t-SNE
resolution = 0.8) by Seurat, termed EPCs_A and EPCs_B. c) Expression of epithelial lineage marker genes (EPCAM, CDH1 also known as E-CADHERIN)
and cell proliferation markers (MKI67 and PCNA) in each cell. CSCs and EPCs exhibit similar expression patterns. d) Classification of single cells into
cell-cycle phase based on expression patterns of selected cell-cycle specific genes.[9] Color represents a cycling cell; black represents noncycling. Right
panel indicates distribution of cycling cells in EPCs and CSCs. e) GSEA analysis of signature in GO term of “positive regulation of cell activation” in
CSCs compared with non-CSCs. Enrichment score (ES) was calculated by GSEA software from the Broad Institute. Black bars represent individual genes
in rank order.

LGR5,[5b] CD44[29] and SOX9[30] are WNT target genes. Canonical
WNT/𝛽-CATENIN signaling pathway enables nuclear transloca-
tion of 𝛽-Catenin and TCF/LEF-dependent gene transactivation
in human intestinal EPCs.[28b] In the intestinal epithelium, 𝛽-
CATENIN and TCF couple proliferation and differentiation to
the sorting of cell populations.[28c] HIPPO pathway effector YAP1
and YAP target genes (TJP1, CYR61, TEAD2, TEAD1, CTGF)
were highly expressed in CSCs, in contrast to other subpopu-
lations, except for EPCs (Figure 1g). The TGF-𝛽 pathway was
strongly activated in CSCs as evidenced by high expression lev-
els of the targets ID1, ID3, and ID4, receptor-regulated SMADs
(SMAD2, SMAD4, and SMAD5), and ligand BMP4 and receptors
(Figure 1g).

Classical CSC marker genes PROM1/CD133, CD44, and
LGR5 were highly expressed in CSCs isolated from primary
CRCs (Figure 1h). Remarkably, EPCs also expressed these com-
mon CSC marker genes. Moreover, our single-cell analysis iden-
tified specific genes enriched for CRC CSCs, including PROX1,
TNFRSF19/TROY, SMOC2, NOTUM, BAMBI, PHLDA1, IFI27,

and ERBB3, and these genes were expressed at remarkably
higher levels in CSCs distinct from any other cell type (Figure 1i).
Earlier, cells positive for Prox1 show stem cell activity in mouse
intestinal adenomas.[31] Tnfrsf19 and Smoc2 also are highly ex-
pressed in mouse intestinal stem cells.[5c,32]

These analyses reveal the global gene expression pattern that
distinguishes CSCs from niche cells in CRCs. Interestingly, the
signaling pathways of the EPC clusters resemble those of CSCs,
unlike other nonepithelial cancer cell-types (Figure 1g).

2.5. Linkage and Difference between CSCs and EPCs in CRC

Unsupervised hierarchal clustering analysis showed that EPCs
and CSCs were clustered together, distinct from immune cells,
indicating that EPCs and CSCs are more closely related than
other cells (Figure 2a). Nevertheless, EPCs could be further
classified into two subpopulations under high resolution (=0.8)
by t-SNE, which were arbitrarily termed EPCs_A and EPCs_B

Adv. Sci. 2021, 8, 2004320 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2004320 (5 of 19)



www.advancedsciencenews.com www.advancedscience.com

(Figure 2b; Figure S4a, Supporting Information). A set of 98 up-
regulated genes were shared in CSCs and these two subtypes of
EPCs, and associated with the specific functions of cancer EPCs
(Figure S4b, Supporting Information). By GO analysis, the most
upregulated genes (1826; Table S7, Supporting Information) in
EPCs_B were uncovered to participate in cell cycle related terms,
such as regulation of mitotic cell cycle and cell cycle G2/M phase
transition (P < 10−10) (Figure S4c,d, Supporting Information).
Both EPCs and CSCs expressed epithelial lineage markers EP-
CAM and CDH1/E-CADHERIN at higher levels than did other
cell types, suggesting their potential linkage of the cancer EPC
types (Figure 2c). Nevertheless, cell proliferation genes includ-
ing PCNA and MKI67 were expressed at higher levels in EPCs_B
compared with EPCs_A, but not or only minimally expressed in
CSCs (Figure 2c). While the rare CSCs instead highly expressed
MEX3A (Figure 2c), Mex3a is shown to express in a subset of
LGR5+ cells that proliferate slowly and MEX3A+ cells are multi-
potent and can generate all mouse intestinal lineages including
epithelium.[33]

Additionally, we analyzed the cell-cycle status using expression
signatures for G1/S and G2/M phase specific genes.[9] Consistent
with proliferation markers, most of the high cycling score cells
belong to EPCs, and the proportion of cycling cells from EPCs_B
was higher than that of EPCs_A, in contrast to CSCs (Figure 2d).
Further, comparative gene expression analysis and gene set en-
richment analysis (GSEA) on CSCs and other subpopulations re-
vealed a noticeable downregulation of a large number of genes
associated with the gene ontology (GO) term positive regulation
of cell activation (Figure 2e). These data suggest that the CSCs
in CRC may be quiescent or dormant and that the EPCs_B sub-
population might represent major proliferative CSCs-like cells or
tumor initiating cells (TICs) in CRC.

2.6. scT&R-seq Analysis Reveals Short Telomeres in CSCs of CRC

Using a well-established method for simultaneous measure-
ment of telomere length in combination with RNA-seq analysis
(scT&R-seq) in the same cell,[16,17] we obtained both scRNA-seq
and relative telomere length data from 302 single cells (Table S8,
Supporting Information). A total of 242 cells passed the RNA-seq
and telomere length QC concurrently (Figure 3a, see the Experi-
mental Section). Relative telomere length, shown as T/R ratio, in
CRC tumors at the single-cell level varied considerably ranging
from 0.83 to 3.33 (Figure 3a). Of the subpopulations, EDCs and
CAFs had the longest telomeres on average, whereas dendritic
cells (DCs) displayed the shortest mean telomeres (Figure 3b).
Surprisingly, CSCs contained shorter telomeres compared with
most of other cell types (Figure 3b).

Furthermore, we systematically compared the telomere length
and features among CSCs, EPCs_A, and EPCs_B. The stemness
score significance of EPCs_B resembled more closely CSCs than
did EPCs_A, and EPCs_B differed from EPCs_A (P = 0.0309)
(Figure 3c), again suggesting that EPCs_B may arise from CSCs.
Intriguingly, both EPCs_B and EPCs_A cell types had longer
telomeres than did CSCs (Figure 3d). The immediate questions
were why their telomere lengths differed and how the telomere
lengths were maintained in CSCs and EPCs. As telomeres are pri-
marily maintained by telomerase, we then predicted telomerase

activity (telomerase score) through a series of gene signatures
that were reported and validated in human cancer cell lines[14a]

(Table S5, Supporting Information). EPCs exhibited a higher
“telomerase score” than did other subpopulations, and EPCs_B
cells expressed higher telomerase activity than did EPCs_A and
CSC cells (Figure 3e). The stemness score of CSCs was dissoci-
ated with telomerase activity (Figure 3f, P = 0.0950), while the
stemness score was significantly correlated with telomerase ac-
tivity in EPCs (Figure 3f, P = 0.0006). When all cells were pooled,
the stemness score significantly correlated with telomerase activ-
ity (Figure 3f, P < 0.0001). Yet, telomere length did not correlate
with stemness score (Figure 3g, P = 0.9247), nor with telomerase
activity in the pooled cells (Figure 3g, P = 0.6697), likely due to
the extreme heterogeneity of CRC tumors and rare CSCs in the
population.

Genes related to telomerase and telomere recombination (a
term with gene list from GSEA) were highly enriched in EPCs_B
cells (Figure 3h). The components of telomerase complex DKC1
and NOP10, telomere shelterin complex TERF1/TRF1, and re-
combination related genes, such as POLD2, RAD51, RAD50,
FEN1, SMC5, and SMC6 were highly expressed in EPCs_B cells
(Figure 3h). Moreover, EPCs_B cells also expressed MYC, a
known activator of telomerase, and EPCs_A cells also expressed
MYC at relatively higher levels, in contrast to CSCs. These data
suggest that both telomerase activation and recombination-based
pathway during cell division coincided with the longer telomeres
of proliferative EPCs_B cells. Altogether, our data indicates that
CSCs of CRC are dormant and exhibit similarities to and dif-
ferences from cancer EPCs. Dormant state without proliferation
presumably grants privilege for CSCs to maintain short telom-
eres without further shortening.

2.7. Plasticity of CSCs and EPCs in CRC

To understand how CSCs and non-CSCs cell types and states are
related to each other, we next reconstructed their trajectories by
pseudotemporal ordering of single cells using Monocle,[34] an un-
supervised algorithm for inferring branching of lineage assign-
ments and developmental distances using scRNA-seq data. Re-
markably, Monocle ordering of CSCs, EPCs_A, and EPCs_B using
all detected genes, revealed a trajectory that started from the rest-
ing CSC stage and differentiated into the two subtypes of EPCs,
indicating gene expression dynamics that recapitulate activation
of CSCs (Figure 4a).

Indeed, CSCs and EPCs highly expressed widely reported
markers of epithelial lineage cells, such as EPCAM and
E-CADHERIN/CDH1 independent of pseudotime path (Fig-
ure 4b), and these distinct EPC markers showed continuous high
expression during transition of CSCs to EPCs branch. The stem-
ness genes (e.g., CD133, LGR5, ALCAM, KLF4, and PROX1)
were decreased during this transition process along pseudotime
path, while the markers of the cell cycle (e.g., PCNA, CCND1,
and CCND2) were increasingly expressed (Figure 4c). In addi-
tion, consistent with the above data of individual gene, the stem-
ness score decreased from CSCs to EPCs_B cells, while the num-
ber of cycling cells increased (Figure 4d). The stemness score was
significantly correlated with telomerase activity in EPCs on sin-
gle cell level (Figure 3f), but not in CSCs. We interpret that the
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Figure 3. Telomere length and its significance in CSCs and EPCs of CRC tumors. a) Histograms displaying single-cell telomere length. Relative telomere
length shown as T/R ratio was measured by qPCR after preamplification step that simultaneously amplifies both telomere repeats (T) and a reference
gene (R). Each histogram represents an individual cell. Cells were grouped and color-coded by distinct subcell types. b) Boxplot showing distribution of
telomere length in subpopulations of CRCs. Each box shows the median and interquartile range (IQR 25th–75th percentiles), and whiskers indicate the
highest and lowest value within 1.5 times the IQR. c) Distribution of stemness score in CSC cluster and EPC subclusters. d) Mean telomere length in CSC
cluster and EPC subclusters. e) Distribution of predicted telomerase signature in CSC cluster and EPC sub-clusters. Mean ± SEM, P-values based on
one-way ANOVA. f) Scatter plot illustrating predicted telomerase signature and stemness score in CSCs, EPCs, and all single cells. A linear regression line
is also shown. g) Correlation among stemness score, predicted telomerase signature and telomere length. A linear regression line was shown. Shading
represents the 95% confidence interval for regression line. h) Heatmap displaying expression pattern of telomere-related genes in EPCs and CSCs. Two
lists of telomere-related genes were from “GO_telomere_maintenance_via_telomerase” and “GO_telomere_maintenance_via_recombination” in GSEA
(http://software.broadinstitute.org/gsea/index.jsp).

activated EPCs require higher telomerase to support their prolif-
eration and stemness for tumor formation. We then compared
cells between CSCs and EPCs, and identified 936 upregulated
and 5815 downregulated genes (Figure S4e, Supporting Infor-
mation). The gene ontology analysis illustrated that up-regulated
genes in CSCs were significantly enriched for several disease-
related terms, such as cell adhesion molecules, T cell receptor sig-
naling pathway, and chemokine signaling pathway (Figure S4f,
Supporting Information).

2.8. Further Characterization and Validation of CSCs and EPCs in
CRC by High Throughput Single-Cell RNA-seq

The aforementioned data from SMART-seq2 provided in-depth
coverage of transcripts together with telomere length measure-
ment, which limits number of cells analyzed. To validate the fea-
tures of CSCs and EPCs with a different method, we indepen-

dently captured a larger number of cells on the 10 × Genomics
platform for scRNA-seq (Figure 5 and Figure S5, Supporting In-
formation) from three more CRC patients. In addition to tumors,
matched normal tissue from the same patient also was analyzed.
We first filtered out the low-quality cells having transcriptomes
with fewer than 200 expressed genes and the genes expressed in
less than three cells, such that 3681 cells from tumor tissue and
6735 cells from normal tissue were retained for subsequent anal-
ysis (Figure S5a, Supporting Information). The mapping results
showed that an average of approximately 7428 unique molecule
identifiers (UMIs) from ≈1911 genes were detected per cell (Fig-
ure S5a,b, Supporting Information).

By t-SNE clustering analysis, we identified 11 distinct clusters,
including CD4+ T cells (TC) and CD8+ TC, B cell (BC), plasma
cell (PC), T helper cells (T helper), fibroblast, mast cells, mono-
cyte, two types of EPCs (EPC_A and EPC_B), and stem cells
(SC) (Figure S5c, Supporting Information). Like the SMART-
seq2 data, the specific markers of each cell type were clearly
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Figure 4. Lineage tracing of CSCs and EPCs. a) Single-cell trajectories by Monocle analysis showing the development of the “Epithelial lineage” cells.
The distance from a cell to the root corresponds to pseudotime. Branched trajectories are plotted as a 2D tree layout. b) Expression of known epithelial
markers EPCAM and E-CADHERIN with pseudotime. The lines with blue represent the epithelial branch. Each point corresponds to a single cell, and
each color represents subpopulation. c) Gene expression levels in single cells ordered along the pseudotime axis for CSC markers, stemness and cell
cycle related genes. Cells are color-coded by subpopulation. The lines indicate local polynomial regression smoothing. d) Distribution of stemness score,
cycling cells, and predicted telomerase score with pseudotime exhibit continuous pattern. The color key represents the score levels by a gradient.

distinguished by the clusters (Figure S5d,e, Supporting Informa-
tion). We noticed that all 11 clusters identified from the 10 × Ge-
nomics data were observed in the three patients, although they
varied in their proportions (Figure S5f, Supporting Information).
These data indicate that the cell types identified do not represent
patient-specific subpopulations or batch effects.

Remarkably, the proportion of stem cells in tumor tissue in-
creased by seven-fold more than normal tissue at an average of
1.77% versus 0.25% (Figure S5f, Supporting Information). In ad-
dition, the proportion of EPCs in tumor tissue (86%) also nearly
doubled comparing to normal tissue (47%) (Figure S5f, Support-
ing Information). To further mine the molecular features of the
stem cells, we analyzed the specific expression of genes derived
from the 10 × Genomics data by KEGG analysis for each group.
The featured genes were again enriched in WNT, HIPPO, and
TGF-𝛽 signaling pathway (Figure S5g, Supporting Information).
These pathways were also associated with the genes enriched in
CSCs independently revealed by our SMART-seq2 data. Consis-
tently, stem cell groups characterized by 10 × Genomics also ex-
hibited higher stemness score than other cell types, while the ter-
minally differentiated plasma cell (PC) received the lowest stem-
ness score (Figure S5h, Supporting Information). The markers
for stem cell group identified from 10×Genomics were shared in
large number with those of SMART-seq2 and these shared genes
enriched in the same functional terms related to stemness (Fig-

ure S5i, Supporting Information). These data highlight that the
data from our 10 × Genomics and SMART-seq2 are reasonably
consistent.

Comparison of the two different stem cells, tumor stem cells
and normal stem cells, showed that the pathways of mTORC1,
MYC signaling and oxidative phosphorylation, were positively
enriched in tumor stem cells (Figure S5j, left panel, Support-
ing Information). mTORC1 activation is essential for the cells
that require adequate energy resources, nutrient availability, oxy-
gen abundance, and proper growth factors for mRNA transla-
tion to begin.[35] In addition, cell function of the upregulated
genes in tumor stem cells was more enriched with activation in
the immune responses (Figure S5j, right panel, Supporting In-
formation). Accordingly, cell-cycle status analysis indicated that
stem cells from tumor tissue are noncycling cells (Figure S5k,
Supporting Information), consistent with their quiescent state.
While more proliferating cells were found in EPC_B cells, and
MKI67 labeled proliferating cells also were mainly enriched in
EPC_B cells (Figure S5k, Supporting Information). We observed
some residual MKI67+ cells in EPC_A cells, and we infer that
these rare MKI67+ cells can be just transited from EPC_B with
a low proliferation activity. In addition, compared to the normal
stem cells, CSCs specifically expressed genes including SMOC2,
BAMBI and NOTUM (Figure S5l, Supporting Information), con-
sistent with our SMART-seq2 data. Hence, single-cell analysis of
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Figure 5. Inferred CNV profiles from 10×Genomics scRNA-seq and prediction of prognosis by molecular signature of CSC specific genes. a) Heatmap for
chromosomal landscape of inferred large-scale copy number variations (inferCNVs) distinguishing tumor (malignant) from nontumor cells for individual
cells (rows) from the stem cell population and EPCs. Amplifications (red) or deletions (blue) were inferred by averaging expression over 100-gene
stretches on the respective chromosomes (columns). These patterns implicate chromosomal amplification and deletion. * indicate the chromosomes
with the same CNVs in CSCs and EPCs. b) Heatmap for chromosomal landscape of inferred large-scale copy number pattern for individual immune cells
(rows) from normal and tumor tissues. c) Survival curve by CSC signature genes. Kaplan–Meier log-rank tests were performed using default parameters
in SurvExpress, an online biomarker validation tool and database (http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp). Datasets including
The Cancer Genome Atlas (TCGA) (specifically COADREAD-TCGA (Available for survival), Colon and Rectum adenocarcinoma (Available for survival),
GSE41258 (Available for survival and recurrence) and GSE28722 (Available for survival, recurrence and metastasis). Statistical significance was assessed
using a log-rank test.

a larger number of cells reveals that CSCs are distinct from nor-
mal stem cells.

Genomic mutation or stability, shown as copy-number vari-
ations (CNVs), including amplifications, deletions, and whole-
chromosome gains or losses, is a hallmark of cancer.[36] To dis-
tinguish CSCs from normal tissue stem cells, we attempted to
obtain patterns of large-scale CNVs for each stem cell by averag-
ing relative expression levels over large genomic regions along
with conventional single-cell transcriptome profiling.[1b,37] The
normal sample with 17 single cells served as controls. Approx-

imately 67% (44 of 65) of the stem cells from tumor exhibited
distinct chromosomal gene expression pattern (higher CNV lev-
els) and normal stem cells showed no apparent CNVs (Figure 5a).
To define malignant cells of two EPC cell types, we calculated the
CNV scores in each cell across the genome following the same as-
say, and found that over 40% (41% of EPC_A and 55% of EPC_B)
of EPCs from tumor tissues were featured with high CNVs while
the EPCs from normal control tissues apparently without CNVs.
Interestingly, it showed that the stem cells in tumors acquired
mutations by increased CNVs notably on chromosome 1, 13, 14,
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15, 17, 18, 20, and 21, distinct from stem cells in normal tis-
sue. Coincidently, about 40% of EPC_A and EPC_B cells (less
than 50% in EPA_A and more than 50% in EPC_B) exhibited
the same patterns of CNVs on the same chromosomes as that
in the CSCs (Figure 5a). These results suggested that the stem
cells and EPCs beard CNVs in cancer fit the real CSCs and ma-
lignant cancer EPCs, and that CSC and cancer CSC share the
same originality. On the other hand, the stem cells and EPCs
without CNVs are their healthy counterpart in normal tissues or
tumor tissues. Gain of chromosome 13 and loss of chromosome
14 and 15, the most common genetic alterations in human colon
and rectal cancer,[30] were consistently inferred from our 10 ×
Genomics results (Figure 5a). We also inferred CNVs for several
other cell noncancer populations both in normal and tumor tis-
sues. These cell types display “normal” (healthy) CNV patterns
with only some minor noise signals, which are the baseline tech-
nical noise, with apparent exception B cells (Figure 5b). Neverthe-
less, these possible CNVs differed from those observed in CSCs
and cancer EPCs.

Taken together, the similar outcomes obtained from differ-
ent RNA-seq methods further validate the common features of
CSCs and EPCs. Moreover, based on the connection in stemness,
shared marker genes and signaling pathways but distinctions in
the mutation and specific genes for CSCs, the CSCs of CRC may
originate from normal stem cells at the tumor initiation state.

2.9. Association of the Signature of CSCs and EPCs with
Prognosis of CRCs

We explored the possibility that the cell-type molecular signa-
tures, particularly those shared by CSCs and EPCs, correlate with
the clinical outcome of CRCs. First, we looked at whether the top
highly expressed genes in CSCs defined above were associated
with clinical outcome, using the public datasets from The Cancer
Genome Atlas (TCGA), specifically COADREAD-TCGA, Colon,
and Rectum adenocarcinoma, GSE41258 and GSE28722, and the
survival analysis software SurvExpress.[38] Since CSCs feature the
traditional stem cell properties with therapeutic resistance, we
attempted to test whether signature genes of CSCs in compar-
ison with normal stem cells can predict poor outcome of CRC
patients. Indeed, patients with high expression levels of CSC spe-
cific genes showed low survival in the all query datasets, with sig-
nificant correlation with recurrence (GSE41258 and GSE28722)
and metastasis of CRCs (GSE28722) (Figure 5c).

We also compared expression profiles of malignant and less
malignant tumor tissue from CRCs using bulk expression pro-
files from TCGA data sets and categorized them into 11 distinct
microenvironment signatures based on their inferred cell type
composition. Cancer samples with a high abundance of cancer
EPC signatures (CSCs, EPCs_A and EPCs_B) were malignant
tumor samples, whereas cancer samples with fewer signatures
were more frequently included in less malignant samples (Figure
S6a, Supporting Information). These results also suggest that the
signature of CSC and EPC abundance is linked to preferential ex-
pression in the poorly differentiated tumors; therefore these sig-
natures may be used for prognosis. These additional data analy-
ses further validate our characterization of CSCs and EPCs at the
single-cell resolution above.

Moreover, CRC patients with a high CSC signature repre-
sented by the CSC specific genes (NOTUM, SMOC2, BAMBI,
PHLDA1, TNFRSF19, PROX1, IFI27, and ERBB3), exhibited sig-
nificantly worse survival (Figure S6b left, Supporting Informa-
tion). Six up-regulated genes (EPCAM, CDH1, KRT18, CLDN4,
CXADR, and SLC12A2) selected based on our functional analy-
sis above and shared by both CSCs and EPCs in SMART-seq2
and 10 × Genomics data, predicted the poorest survival rate of
CRC patients (P = 1.686 × 10−5, Figure S6b right, Supporting In-
formation). We also performed a similar analysis using the top
20 highly expressed signature genes in each subpopulation, and
found only a weak correlation in T cells, macrophages and den-
dritic cells and no correlation in the rest of the cell populations
(Figure S6c, Supporting Information). These data show that the
specific signature genes of CSCs predict poor clinical outcome
of CRC patients and could potentially become clinically useful
prognostic biomarkers.

2.10. Experimental Validation and Significance of the Signature
Genes in CSCs and EPCs

We validated the function of these specific genes in CSCs and
EPCs from human CRC primary tumors. Using the seven sig-
nature genes shared by both CSCs and EPCs, we by reverse tran-
scription qRT-qPCR compared their expression levels in three pa-
tients with recurrence (poor prognosis) and three patients with-
out recurrence (well prognosis) at three years after surgery. We
observed elevated expression levels of these genes in the poor
prognosis group despite the few samples available (P = 0.0237;
Figure S6d,e, Supporting Information). Of these key signature
genes, EPCAM and CD133 reportedly are expressed at high lev-
els in human CRCs and associated with prognosis.[39] The other
four enriched genes KRT18, SLC12A2, CXADR, and CLDN4 also
were expressed at higher levels by immunofluorescence in pa-
tients with poor prognosis compared to patients with well prog-
nosis (Figure S6e, Supporting Information).

KRT18 (cytokeratin 18, also named CK18) encodes for the
type I intermediate filament chain keratin 18, and regulation
of KRT18 by WNT is involved in AKT activation.[40] In addi-
tion, KRT18 plays an important role in chemo-sensitivity in
lung cancer.[41] KRT18 was highly expressed in the tumor site
as assessed by both RT-qPCR and immunofluorescence (Fig-
ure S6d,e, Supporting Information). KRT18 could be an im-
portant tumor marker for clinical diagnosis of CRCs. SLC12A2
is a blocker of Na+/K+/2Cl− cotransporter (NKCC), and over-
expression of SLC12A2 promotes cell proliferation and correlates
with poor differentiation and metastasis of tumor cells.[42] Higher
levels of SLC12A2 were found in poor prognosis compared with
well prognosis samples, which displayed relatively reduced ex-
pression signals (Figure S6e, Supporting Information). CXADR
(coxsackie virus and adenovirus receptor) is localized to epithelial
tight junctions in vivo where it may regulate epithelial permeabil-
ity and tissue homeostasis.[43] CXADR was also highly expressed
in the poor prognosis samples (Figure S6e, Supporting Infor-
mation), and may be closely involved in EPC functional mainte-
nance. CLDN4 was highly expressed in both CSCs and EPCs, and
correlated with prognosis (Figure S6e, Supporting Information).
The claudin (CLDN) family of transmembrane proteins plays a
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critical role in the maintenance of epithelial and endothelial tight
junctions and promotes self-renewal of human CRC stem-like
cells.[44]

To further validate the features of cells identified by shared
and CSC-specific gene expression revealed by our simultaneous
analysis of the transcriptome and telomere length, we visual-
ized these markers and telomere length in tumor sections by
immunofluorescence microscopy with telomere fluorescence in
situ hybridization (IF-FISH). The markers KRT18, SLC12A2, CX-
ADR, and CLDN4 shared by CSCs and EPCs showed a noticeable
wide distribution pattern with high proliferation cells marked
by PCNA or MKI67 expression in CRC tumors (Figure 6a). In
contrast, BAMBI and TNFRSF19 positive cells from primary tu-
mor sections did not express or only minimally expressed MKI67
(Figure 6b). Cells positive for BAMBI and TNFRSF19 were rare,
about 2.5% and 1.6%, respectively (after counting more than 5000
cells from 7 patients). Of these positive cells, more than 70%
BAMBI positive cells and 90% TNFRSF19 positive cells were neg-
ative for MKI67 in these tumors (Figure 6b). These immunofluo-
rescence in situ data were consistent with our single-cell analysis
results that proliferation is low in CSCs. IF-FISH of tumors us-
ing CSC feature genes (e.g., BAMBI and TNFRSF19) showed that
telomeres were notably shorter in a subset of the marker positive
cells than in negative cells (Figure 6c), validating short telomeres
in CSCs delineated by our simultaneous single-cell analysis of
telomeres and transcriptome. However, cells positive for mark-
ers, such as KRT18 and SLC12A2, shared by CSCs and EPCs ex-
hibited heterogeneous telomere lengths (Figure 6d). This was not
unexpected since EPCs would contain relatively longer telomeres
and CSCs shorter telomeres, based on the combined single-cell
analysis results.

Furthermore, we tested the potential cellular functions of a
set of selective marker genes, including the four new prognosis-
valuable genes (KRT18, CLDN4, CXADR, and SLC12A2) shared
by both EPCs and CSCs, and two specific genes TNFRSF19
and BAMBI enriched in CSCs, using HCT116 cell line by
CRISPR/Cas9 dual sgRNA-mediated gene deletion (Figure S7a,
Supporting Information). HCT116 cell line exhibits CSC-like
properties and has been used as a model to study the functions of
human CRC cell stemness.[45] In addition to Sanger sequencing
validation of the gene knock-out cell lines (Figure S7b, Support-
ing Information), the loss of corresponding protein was also vali-
dated by Western blot analysis (Figure S7c, Supporting Informa-
tion). Deletion of KRT18, CXADR, CLDN4, or SLC12A2 resulted
in reduction of cell size and the cells showed round-shaped cell
in morphology, perhaps suggestive of the cells undergoing cell
death, but deletion of TNFRSF19 or BAMBI showed less effect
on cell morphology (Figure 7a). Functional disruption of KRT18,
CXADR, SLC12A2, or CLDN4 significantly reduced cell prolif-
eration, but interestingly TNFRSF19 or BAMBI disruption did
not (Figure 7b). Further analysis of cell apoptosis by Annexin V
staining indicated that deletion of KRT18, CXADR, SLC12A2, or
CLDN4 resulted in increased apoptosis and necrosis (Figure 7c).
These data provide additional functional evidence to validate the
signature of dormant CSCs revealed by our comprehensive anal-
ysis of telomeres and transcriptome in the same cell, also sup-
porting the notion that it is the dormant CSCs that resist chemo-
therapy and may initiate recurrence when being activated to enter
proliferation, via transforming to EPCs.

3. Discussion

Our data reveals that rare CSCs in CRCs exist in a dormant
state and possess high stemness and high WNT, TGF-𝛽 and
YAP/HIPPO signaling and are able to maintain short telomeres
without cell proliferation. However, these rare dormant CSCs and
the more cancerous EPCs share the common cell surface mark-
ers that are conventionally used to identify CSCs, and these data
may explain the various frequencies reported for CSCs.[3a,4b,5a] A
portion of EPCs can be tracked from dormant CSCs by lineage
tracing and mutation origins, acquire telomerase activity and
elongate telomeres and may represent proliferative TICs,[3b,c,8b]

resulting in high self-renewal activity or transit-amplifying cells
(Figure S8, Supporting Information).

On the assumption that rare CSCs potentially exist in primary
tumors, we initially enriched CSCs by FACS using commonly
known cell surface markers CD133, CD44, and/or LGR5, or tu-
morsphere formation. Yet, CD133, CD44 and/or LGR5 positive
or negative cells are detected in both CSCs and EPCs, suggest-
ing that the common cell surface markers alone could not indi-
cate nor distinguish CSCs from EPCs. CD44 or its isoform has
long been thought to be a marker CSC marker,[4b,46] however,
controversy remains especially as to its correlation with clinical
outcome.[39,47] In addition, single-cell cloning of colon CSCs re-
vealed a multilineage differentiation capacity in tumorigenesis
using CD44−/− mice model.[29] From the 10 × Genomics data
with all cells, the population of EPC_A plus EPC_B are ≈2-fold
in tumor tissues than in the matched normal colon tissues, and
about 40% EPCs in tumors were likely malignant cancer EPCs.
Meanwhile only 1.77% cells in tumor tissues are of the quiescent
stem cells and 70% of these stem cells are CSC population. These
observations also suggest that identification of rare CSCs is lim-
ited by FACS using existing surface markers, which is insuffi-
cient to recover the wide heterogeneity of CSCs. Recently, single-
cell analysis of the transcriptome and epigenome also showed
that KRT8, KRT18, CLDN4, KRT19, KRT20, etc. are highly ex-
pressed in CRCs,[12a] consistent with our results that these genes
were highly expressed in cancer EPCs. Our integrated single-cell
analysis of telomere length and transcriptome profile in the same
cell is essential to the discovery of CSCs and their features, and
to clarify their nexus to cancer EPCs (Figure S8, Supporting In-
formation).

Additionally, high throughput scRNA-seq on 10 × Genomics
reveals that stem cells from tumor and normal can be clustered
together, but the stem cells from a tumor accumulate CNVs and
acquire activation signals to the immune response than do nor-
mal stem cells. Most recently, a combination of single cell anal-
ysis by SMART-seq2 and 10 × Genomics scRNA-seq validated
tumor-infiltrating immune cells and their cellular interactions
for regulating tumor.[48] Another exciting study by single cell
analysis of mouse and human CRCs also uncovered tumor ini-
tiating stem cells that display high YAP, regulated by signaling
from a mesenchymal niche.[49] These findings further demon-
strate the power of single cell analysis in the discovery of new
cell types and their interactions and conversions.

CSCs may originate from normal tissue stem cells follow-
ing mutations.[5c,8c] Here a systematic investigation by SMART-
seq2 and validation by 10 × Genomics scRNA-seq consistently
demonstrate that stem cells in CRC appear to have mutated and
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Figure 6. Validation of enriched genes shared by CSCs and EPCs or specific for CSCs by immunofluorescence and telomere FISH of CRCs. a) Proliferation
markers PCNA or MKI67 and shared markers KRT18, SLC12A2, CXADR, and CLDN4. b) Proliferation marker MKI67 costained with CSC enriched genes,
TNFRSF19 and BAMBI. White arrows indicate marker positive but MKI67 negative cells. c) CSC specific markers TNFRSF19 or BAMBI (green) and
telomere FISH (red). Areas within dashed lines in orange indicate marker positive cells; areas within dashed lines in white indicate marker negative cells.
d) CSC and EPC shared markers SLC12A2 or KRT18 and telomere FISH (red). Areas within dashed lines in orange indicate marker positive cells; areas
within dashed lines in white indicate marker negative cells. Scale bar = 20 µm.
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Figure 7. Functional analysis of specific genes in CSCs or shared by both CSCs and EPCs by CRISPR/Cas9. a) Morphology of cells with knock-out of
selected key genes. Two sgRNAs were used for construct knockout (KO) cell lines on human CRC HCT116 by Lipo2000 system, and stable KO clones
were selected after sorted the GFP positive cells by FACS. Scale bar = 50 µm. b) Growth curves of cells with key gene knockout. Approximately 1 × 104

HCT116 cells (at passage 5) were seeded on Day 1. Cells were counted every day. n = 3 repeats. c) Percentage of apoptotic cells in each group (at passage
5) was detected by flow cytometry using Annexin V-FITC.

nonmutated populations, and the mutated populations share the
same mutation patterns as a part of EPCs in cancer. We suggest
that these mutated stem cells are CSCs and they are the progen-
itors of cancer EPCs, the malignant EPCs in cancer tissues (Fig-
ure 5). This conclusion is supported by the lineage tracing anal-
ysis (Figure 4), whereas other EPCs without evident mutations
look more like normal EPCs. CSCs and EPCs exhibit high YAP
and WNT signaling activity, driven by mutation of related genes,
such as APC and KRAS, which has been identified to be criti-
cal for CRC tumorigenesis.[50,30] CSCs may also develop through
acquisition of stemness from differentiated cells by reprogram-

ming during tumor progression.[51] CSCs have short telomeres
but without further shortening, and this may be explained by
their dormancy without cell proliferation, such that short telom-
eres do not undergo further shortening without telomerase. Re-
cently, we show that telomeres are short in CSC-like cells and the
length is maintained by PML based mechanisms.[52] It remains to
be clarified how dormant CSCs acquire telomerase and become
proliferative CSC-like cells, EPCs. Although both dormant CSCs
and active EPCs share the signaling pathways of YAP, WNT and
TGF-𝛽, TGF-𝛽 signaling is more active in CSCs than in EPCs.
Interestingly, YAP and WNT can activate telomerase,[53] while
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TGF-𝛽 inhibits TERT expression and telomerase activity.[54]

Higher TGF-𝛽 signaling in CSCs is consistent with their minimal
telomerase activity and quiescent state. Nonetheless, dormant
CSCs themselves presumably do not directly initiate tumorige-
nesis unless certain signals, stimulus or niche that remain to be
determined are provided to waken the cells.

The cellular plasticity has been reported in healthy
intestine[28a,55] and the stem cell plasticity is tightly linked
to changes in WNT levels,[56] while cancer cells also can dy-
namically shift between a differentiated and a stem-like state.[1c]

Even the LGR5 negative cells possess the intrinsic capacity for
rebuilding the epithelial hierarchy organization.[57] CSCs are
often embedded in and thus confused with EPCs.[57a] Here, we
found that quiescent CSCs also exhibit high plasticity and can
generate EPCs. Higher stemness, low cell proliferation, low
telomerase activity and maintenance of short telomeres provide
unique features of dormant CSCs that can be used to discern
them from proliferative EPCs, and these features of plasticity
may allow CSCs to pioneer resistance to therapy as well as
recurrence. The dormancy of CSCs or CSC-like cells also have
been found in other cancers, including breast melanoma, and
glioblastoma.[58] We show that both dormant CSCs and prolif-
erative EPCs highly express LGR5 and here link the dormant
CSCs in CRC to proliferative EPCs as having been designated as
TICs or tumor-initiating stem cells.[59]

High telomerase activity and sufficient telomeres are essential
for self-renewal of tumorigenesis.[13a,b] Therefore, there is a per-
sistent effort to develop therapeutics that is telomerase-specific
but gentle to nonmalignant tissues.[14c] Dormant CSCs with low
telomerase activity and short telomeres can maintain the stem
cell pool and supply the proliferative EPCs, yet are resistant to
chemo- or radiation-theray. Interestingly, TICs from a panel of
prostate cancer cell lines or glioblastoma TICs have significant
telomerase activity, which can be effectively inhibited by telom-
erase inhibition.[60] It seems that EPCs exhibit features of TICs.
Targeting telomerase using specific inhibitors could prove effec-
tive in demolishing EPCs or TICs with high telomerase activity,
whereas quiescent CSCs with minimal telomerase activity may
evade the therapy. Regardless, identification of CSCs at different
states and their lineage tracing should facilitate targeted thera-
pies to the tumor origin and progression.

4. Experimental Section
Human Primary Colorectal Tumors: Human primary colorectal tumors

for scT&R-seq were obtained from Tianjin Medical University General Hos-
pital. This study was approved by the Ethical Committee at Tianjin Medical
University General Hospital, and informed consent was obtained prior to
investigation. Tumor isolation was carried out as described previously.[3a]

Tumor tissues were isolated from fresh CRCs within 2 h after collection and
were minced into small chunks (≈2 mm3), and then intensively washed
six times in cold PBS containing penicillin (500 U mL−1), streptomycin
(500 µg mL−1), and amphotericin B (1.25 µg mL−1; E485, Amresco). Four
male and four female patients were used, and the information is provided
in Table S1 (Supporting Information). For 10×Genomics analysis, primary
colorectal carcinomas and their corresponding control tissues as well as
clinical information were provided by the Tissue Bank of Yale-New Haven
Hospital (Table S10, Supporting Information). All patients were deidenti-
fied and the standard operation procedures were approved by the Man-

agement Committee at Department of Pathology, Yale University School
of Medicine (YSOP#100).

Tumor Dissociation: Tumor samples collected from primary surgi-
cal specimens were mechanically and enzymatically disaggregated into
single-cell suspensions, following previously published protocols.[10]

Briefly, a single-cell suspension of washed fresh biopsy sample was pre-
pared by mincing the tissues with scissors into small fragments (0.2–0.5
mm3), followed by incubation in advanced DMEM/F12 (12634-010, Life
Technologies) with 1% penicillin/streptomycin (15140-122, Invitrogen),
1.5 mg mL−1 (75 U mL−1) collagenase type IV (17104019, Life technolo-
gies), 20 µg mL−1 Hyaluronidase (H-6254, Sigma), 10 × 10−6 m Y-27632
(281642A, Santa Cruz), and DNase I (D5025-15KU, Sigma) for 30 min at
37 °C to obtain enzymatic disaggregation, which was followed by filtration
through a 40 µm cell strainer (352340, BD Biosciences). Red blood cells
were removed by 1 × red blood cell (RBC) lysis buffer (00-4300-54, eBio-
science) for 10 min, and dissociated cells were pelleted and re-suspended
in 0.1% bovine serum albumin (BSA, A3059-10G, Sigma) with 10 × 10−6

m Y-27632.
Cell Line: The human colorectal cancer cell line HCT116 (RRID:

CVCL_0291) cells were cultured at 37 °C in 5% CO2 in RPMI 1640
(11875085, Life technologies) plus 10% FBS and penicillin (100 U mL−1)
and streptomycin (100 µg mL−1), as previously described.[61]

Fluorescence-Activated Cell Sorting: To minimize loss of cell viability,
the following experiments on fresh cell suspensions were performed,
prepared shortly before flow cytometry. The primary cells were stained
with anti-LGR5-APC antibody (562903, BD Biosciences), anti-CD133-APC
(130-098-129, Miltenyi Biotec), or anti-CD44-FITC (H20441-02H, Sungene
Biotech) for 20 min on ice in 0.1% BSA/PBS, at a concentration of 5 × 105

cells/100 µL, then washed with 3.5 mL 0.1% BSA/PBS and resuspended
in 1 mL 0.1% BSA/PBS containing 50 𝜇L 7-aminoactinomycin D (7-AAD,
559925, BD Biosciences) and 10× 10−6 m Y-27632 for flow cytometry anal-
yses. Fluorescence-activated cell sorting (FACS) was achieved by AriaII
cell sorter (BD Biosciences) equipped with 488 nm (FITC) and 633 nm
(APC) lasers. Side-scatter area (SSC-A) versus forward-scatter area (FSC-
A) and FSC-A versus forward-scatter width profiles were used to discard
doublets and capture singlets. Dead cells were eliminated by excluding
7-AAD+ (PerCP channel) cells.

Tumorsphere Formation: Sphere medium for human colorectal cancer
was prepared as previously described.[8b] Briefly, after blood cells were
removed by lysis buffer, the cell pellet was suspended with sphere cul-
ture medium and dispensed into a low attachment well plate (3471, Corn-
ing) for tumorsphere formation. Tumor cells were placed in serum-free
DMEM/F12 (12634-010, Invitrogen) supplemented with human recombi-
nant EGF (AF-100-15, PeproTech) and basic FGF (PHG0026, Life technolo-
gies) with 10 × 10−6 m Y-27632, growth factors were added every other day
and medium was changed every 7 days. Tumorspheres were then disag-
gregated to single cells after 14 days for single-cell RNA-seq.

Single-Cell Isolation and Separation of Genome and Transcriptome in the
Same Cell: Single cells were picked up in 1 𝜇L 0.1% BSA/PBS using a mi-
cropipette with an epT.I.P.S. Pipette tips (0030000838, Eppendorf) under
a dissecting microscope and transferred to the bottom of a 200 µL PCR
tube (8-strip, nuclease-free, thin-walled PCR tubes with caps, PCR-0208-C,
Axygen) with 4 𝜇L cell lysis buffer which contained 3.45 𝜇L of Buffer RLT
plus (1053393, Qiagen), 0.5 𝜇L Biotin-oligo-dT reverse transcription (RT)
primer (5ʹ-biotin-TEG-AAGCAGTGGTATCAACGCAGAGTACT30VN-3ʹ) and
0.05 𝜇L of Recombinant RNase inhibitor (2313A, Clontech). Consortium
RNA spike-in Mix (ERCC, 4456740, Life Technologies) was added to the
lysis reaction and processed in parallel to cellular mRNA. Separation of
gDNA and mRNA was performed as described previously.[62] Briefly, sam-
ples were incubated at 72 °C for 3 min, and Biotin-oligo-dT primer was hy-
bridized to poly (A)+ tail mRNA. Dynabeads (65001, Life technologies) in 4
𝜇l were added to capture mRNA, and collected by a magnet for scRNA-seq,
and gDNA supernatant was transferred to a fresh PCR tube for telomere
length measurement.

Single-Cell RNA Sequencing: Reverse Transcription: Single-cell cDNA
was synthesized from the tubes containing mRNA according to SMART-
seq2 protocol,[63] with minor modifications: Dynabeads containing single-
cell mRNA were suspended in every PCR tube with 10 𝜇L of the following
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RT Mix: 0.25 𝜇L 100 × 10−6 m template-switching oligonucleotides (TSO)
primer (5ʹ-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3ʹ), 1 𝜇L 10 ×
10−3 m dNTP (11969064001, Roche), 0.06 𝜇L 1 m MgCl2 (AM9530G, Am-
bion), 2 𝜇L 5M betaine (77 507, Affymetrix), 0.5 𝜇L 100 × 10−3 m DTT, 2
𝜇L 5 × Superscript II First-Strand Buffer, 0.5 𝜇L 200 U 𝜇L−1 SuperScript
II reverse transcriptase (18064014, Invitrogen), 0.25 𝜇L 40 U 𝜇L−1 RNAse
inhibitor (2313A, Clontech) and 3.44 𝜇L nuclease-free water (W4502-1L,
Sigma-Aldrich). Every 8-strip PCR tube was mixed with the beads by vor-
tex. Reverse transcription was carried out by incubating the tubes at 42 °C
for 90 min, followed by 10 cycles of 50 °C for 2 min and 42 °C for 2 min.
Finally, the reverse transcriptase was inactivated at 70 °C for 15 min.

Single-Cell RNA Sequencing: PCR Preamplification and cDNA Purification:
Fifteen microliters of the following PCR preamplification mix was added in
each well: 0.5 𝜇L 10 ×10−3 m PCR pre-amplification primer, 12.5 𝜇L 2 ×
KAPA HiFi Mix (KK2601, KAPA Biosystems) and 2 𝜇L nuclease-free water,
with a final PCR reaction volume of 25 𝜇L. The preamplification program
used was as follows: 98 °C for 3 min, 22 cycles of 98 °C for 15 s, 67 °C
for 20 s and 72 °C for 6 min, with a final extension at 72 °C for 5 min. PCR
products were purified by mixing with 25 𝜇L (1 ×) of Agencourt AMPureXP
SPRI beads (A63881, Beckman-Coulter), followed by incubation for 8 min.
The tubes were then placed onto a magnet (A29164, Agencourt) for 8 min
and the supernatant removed by careful pipetting. SPRI beads (1×) were
washed twice with 200 𝜇L of freshly prepared 80% ethanol. Upon remov-
ing all residual ethanol traces, SPRI beads were left to dry at room tem-
perature for 10 min. The beads were then resuspended in 25 𝜇L of elution
buffer (19086, Qiagen) and incubated at room temperature for 5 min. The
plate was placed on the magnet for 8 min and the supernatant containing
the amplified cDNA was transferred to a new 8-strip PCR tube. The con-
centration of amplified cDNA was measured with Qubit 1.0 Fluorometer
(Invitrogen) using the Quant-iT Qubit dsDNA BR Assay Kit (Q32853, Invit-
rogen). The cDNA size distribution was checked by a High-Sensitivity DNA
chip (Agilent Bioanalyzer) or gel electrophoresis, and only cDNA sharply
peaking around 2 kb was used for library preparation.

Single-Cell RNA Sequencing: Library Construction: Libraries were pre-
pared by using TruePrep DNA Library Prep Kit V2 for Illumina (TD503-02,
Vazyme Biotech) according to the product manual, allowing 96 single cell
libraries to be simultaneously generated in 12 rows with 8-strip PCR tubes.
The tagmentation reaction consisted of 1 ng purified cDNA with 4 𝜇L of
TruePrep Tagment Buffer L and 5 𝜇L of TruePrep Tagment Enzyme, added
with purified water to total 20 𝜇L, and mixed well by pipetting 20 times.
The reaction was incubated at 55 °C for 12 min. A volume of 5 𝜇L of Termi-
nate Solution was added and the solution was mixed prior to incubation
at room temperature for another 5 min. The libraries were amplified by
adding 1 𝜇L of TruePrep Amplify Enzyme, 10 𝜇L TruePrep Amplify Buffer,
5 𝜇L of N5 adapter (TD202, Vazyme Biotech), and 5 𝜇L of N7 adapter
(TD202, Vazyme Biotech). The PCR was then carried out at an initial incu-
bation at 72 °C for 3 min, 98 °C for 30 s, followed by 14 cycles of 98 °C for
15 s, 60 °C for 30 s and 72 °C for 3 min, and a final extension at 72 °C for
5 min.

Following PCR amplification, each library was purified by Agencourt
AMPureXP SPRI beads to generate an Illumina-compatible sequencing li-
brary according to the product manual with final size distribution of 300–
700 bp. Briefly, PCR products were purified by mixing them with 30 𝜇L (0.6
×) of SPRI beads, followed by a 5 min incubation period at room tempera-
ture. The plate was then placed onto a magnet for 6 min prior to transfer-
ring the supernatant to a new PCR tube. Another 7.5 𝜇L (0.15×) of SPRI
beads was added to the new PCR tube, followed by a 5 min incubation at
room temperature. The plate was placed onto a magnet for 5 min prior
to removing the supernatant. SPRI beads were washed twice with 100 𝜇L
of freshly prepared 80% ethanol, with care being taken to avoid loss of
beads during the washes. Upon removing all residual ethanol traces, SPRI
beads were left to dry at room temperature for 10 min. The beads were then
resuspended in 25 𝜇L of nuclease-free water (W4502-1L, Sigma-Aldrich)
and incubated at room temperature for 5 min. The plate was placed on
the magnet for 5 min prior to transfer of the supernatant containing the
selected size of library to a new tube.

Single-Cell RNA Sequencing: Illumina Sequencing: Libraries were
pooled after quantification by the KAPA HyperPlus Library Preparation Kit

(KK8514, KAPA Biosystems). Multiplexed single-cell libraries were pooled
and sequenced with a 125 bp paired-end sequencing strategy on a HiSeq
2500 platform (Illumina).

Single-Cell Telomere Length Measurement: The gDNA was purified
by 8 𝜇L Agencourt AMPureXP SPRI beads. After wash with 80%
(vol/vol) ethanol, gDNA beads were stored at −80 °C. Telomere
length of each cell was measured using single-cell telomere length
measurement by quantitative PCR assay (SCT-pqPCR) as previously
described,[16] with slight modifications. A multiplex preamplification (pre-
PCR) step that can simultaneously amplify telomere repeats (T) and
Alu reference gene (R) was employed with the telomere primers (for-
ward primer: CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT,
reverse primer: GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT),
and Alu primers (forward primer: GACCATCCCGGCTAAAACG, reverse
primer: CGGGTTCACGCCATTCTC). The reactions were set up by aliquot-
ting 25 𝜇L of a master mix with single-cell gDNA beads. Each reaction was
set up with 2.5 𝜇L 10 × iTaq buffer, 1.5 × 10−3 m MgCl2, 0.625 U iTaq DNA
polymerase (170-8870, Bio-Rad), 0.5 𝜇L 10 × 10−3 m dNTP mix (170-8874,
Bio-Rad), 1 𝜇L each of telomere forward and reverse primer (10 × 10−6 m),
and 1 𝜇L each of Alu forward and reverse primer (10 × 10−6 m). Thermal
cycler reaction conditions were set at 95 °C for 3 min followed by 18 cy-
cles of 95 °C for 30 s, 60 °C annealing for 30 s and extension at 72 °C for
30 s. The PCR products were purified using 1.8 × Agencourt AMPureXP
SPRI beads and eluted in 64 𝜇L double distilled water. iQ SYBR Green-
based real-time PCR (170-8882, Bio-Rad) was performed using the same
primers and reaction conditions of 95 °C for 10 min followed by 30 cycles
of data collection at 95 °C for 15 s, 60 °C annealing for 30 s and extension
at 72 °C for 30 s along with 80 cycles of melting curve from 55 to 95 °C.
Relative telomere length (T/R ratio) was calculated by comparing the val-
ues of telomere (T) and reference gene Alu (R) in individual cells by the
2−ΔΔCt method when the standard curves of telomere and Alu had similar
high amplification efficiencies. A total of 302 cells were used for telomere
length measurement and 242 cells passed RNA-seq and telomere length
QC (quality control) simultaneously (Table S8, Supporting Information).
Primers for telomere and Alu were synthesized by IDT. Sample prepara-
tions were done in a special PCR hood.

10 × Library Preparation and Sequencing: 10 × library preparation was
provided by Yale Center for Genome Analysis. scRNA-seq libraries were
generated using the Chromium Single Cell 3ʹ Reagent Kit v1 (patient 1)/v2
(patients 2, 3) (10 × Genomics) according to the manufacturer’s protocol.
Briefly, the single-cell suspension in PBS with 0.04% BSA was mixed with
RT-PCR master mix and loaded together with Single Cell 3ʹ Gel Beads and
Partitioning Oil into a Single Cell 3ʹ Chip according to the manufacturer’s
instructions. RNA transcripts from single cells were uniquely barcoded
and reverse-transcribed. cDNA molecules were preamplified, fragmented,
end repaired and ligated with Illumina adapters to generate a single multi-
plexed library. All libraries were quantified by Qubit and 2100 export_High
Sensitivity DNA Assay. Libraries were sequenced on HiSeq 2500, sequenc-
ing parameters were set according to the manufacturer’s instructions.

Single-Cell RNA Sequencing Data Analysis: Raw sequencing files
were separated using their unique index combinations and to generate
the FASTQ files. The human genome (GRCh38) and gene annota-
tion file in GTF format were downloaded from Ensembl database
(ftp://ftp.ensembl.org/pub/release02010;86/fasta/homo_sapiens/dna/
Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz; ftp://ftp.ense
mbl.org/pub/release02010;86/gtf/homo_sapiens/Homo_sapiens.GRCh
38.86.gtf.gz). Sequences and annotation of 92 “spike-in” (from the Exter-
nal RNA Controls Consortium) were merged into human genome and its
annotation file, respectively. scRNA-seq data cleaning and quality control
were conducted using the software Fastq_clean[64] that is optimized
to clean raw reads from Illumina platforms. Low quality (<Q20) bases
on both ends of reads were trimmed and reads containing more than
two ambiguous nucleotides (“N”) were removed. Adapter segments,
template switch oligo (TSO) and Poly (A)+ tail sequences were trimmed.
Subsequently, the cleaned paired-end reads were aligned to the GRCh38
human reference genome using STAR aligner[65] (version 2.5.2a) with
options “–sjdbOverhang” set to “125,” “–outFilterMultimapNmax” set
to “20,” “–alignMatesGapMax” set to “20000,” “–quantMode” set to
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“GeneCounts,” “–twopassMode” set to “Basic,” “–outReadsUnmapped”
set to “None,” “–outFilterIntronMotifs” set to “RemoveNoncanon-
ical” and “–quantMode” set to “GeneCounts” which results in the
quantification of raw read counts at the gene level.

Selection of High-Quality Transcriptomes from the Human CRC scRNA-
seq Experiment: R studio (https://www.rstudio.com/) was used to run in
house R scripts to perform hierarchical clustering and PCA. To identify the
distinct cell populations present in primary CRCs, cell clustering was per-
formed using the R software package Seurat.[19] The count matrix (total of
831 single cells) was first normalized by library size and log transformed
by Seurat. Transcriptomes with fewer than 200 expressed genes and lowly
expressed in three cells were discarded, cells with mitochondrial genes oc-
cupying more than 70% reads were defined as low-quality cells and filtered
out, this resulted in retention of 693 cells with 17565 genes for subsequent
analysis.

Dimensionality Reduction Using PCA and Graph Clustering: The highly
variable genes were identified by the set of genes that were most variable
across single-cell datasets using Seurat with default parameters. Dimen-
sionality reduction was performed using principal component analysis
(PCA), and statistically significant PCs were identified using the Jackstraw
function in Seurat.[19] Twenty significant PCs were identified for scRNA-seq
data. The scores of cells along these significant PCs were used to build
a k-nearest neighbor graph, and partition the cells into transcriptionally
distinct clusters using the smart local moving community detection al-
gorithm as implemented in the FindClusters function in Seurat. Subse-
quently, t-distributed stochastic neighbor embedding (t-SNE) was used to
embed the cells based on statistically significant PCs, and to visualize the
graph clustering output on a 2D map.

Identifying Markers for Each Cluster and Defining Distinct Subpopulations:
To identify genes whose expression values could individually serve as a
classifier for each cluster, Seurat’s function “FindAllMarkers” was used[19]

(using recommended ROC test algorithms) to perform a differential ex-
pression analysis between the cells in the cluster of interest and the rest
of the cells in the dataset. Marker specificity and precision was quanti-
fied using a statistical test based on the area under the precision-recall
curve (AUC) corresponding to the “classification power.” AUC is a quan-
titative measure of the balance between recall (the sensitivity of marker
gene detection within the cluster of interest) and precision (accuracy of the
quantitative levels of gene as a predictor of the correct cell type). Markers
found by the analysis were “digital” (expressed only in the marked cluster)
with AUC values > 0.7 (the AUC values ranged from 0 for random to 1 for
perfect classifier for a given cluster). The AUC values of marker and non-
marker genes were compared at a range of expression values and show
that the marker genes have significantly higher AUC values compared to
non-marker genes. Markers with low AUC values belong to smaller clus-
ters in which a small number of false positives in other clusters can signif-
icantly reduce the AUC value. All markers identified by Seurat are provided
in Table S2 (Supporting Information).

To define cell types from the t-SNE cluster analysis, the CTen platform
was used[66] according to the highly expressed, cell-specific (HECS) gene
expression database to assess cell-type specific enrichment results. Genes
with AUC > 0.9 in each cluster for cell type enrichment analysis. The CTen
enrichment score (-log10 Benjamini-Hochberg adjusted P-value) of 2 or
greater was considered significant. T cell, B cell, EPC, macrophage, den-
dritic cell and mast cell were directly identified by CTen platform. CSC
was defined by the highly-expressed genes and GO enrichment terms (i.e.,
term of “pluripotency of stem cells”). To ensure the specificity of the as-
signment of individual cells to each subpopulation, these identified clus-
ters were further validated by their key marker genes. A full list of the genes
preferentially expressed and reported as marker genes for each subpopu-
lation is given in Table S3 (Supporting Information).

10 × Genomics Computational Analysis: The Cell Ranger software
suite was obtained from 10 × Genomics. Raw sequencing data was de-
multiplexed by Illumina bcl2fastq software to generate separate paired-
end read files for each sample, which were quality-checked using FastQC
software. The Cell Ranger “count” script was used to align human fastq
files to the human GRCh38 reference genome (Ensembl). The raw count
matrices were imported into R for further processing.

R studio (https://www.rstudio.com/) was used to run R scripts to per-
form hierarchical clustering and PCA. To identify distinct cell populations
in primary CRC and normal tissues, cell clustering was performed using R
software package Seurat 3.0.[19] The count matrix was first normalized by
library size and log transformed by Seurat. Transcriptomes with fewer than
200 expressed genes and lowly expressed in three cells were discarded,
cells with mitochondrial genes occupying more than 40% (patient 1) or
70% (patients 2 and 3) of reads were defined as low-quality cells and fil-
tered out, this resulted in the retention of 3681 tumor cells and 6735 nor-
mal cells for subsequent analysis.

Six datasets of three patients’ tumor and normal cells were inte-
grated by “IntegratedData” function of Seurat according to instructions.
t-distributed stochastic neighbor embedding (t-SNE) was used for visual-
ization and clustering. The “FindConservedMarkers” function was used to
identify canonical cell-type marker genes that are conserved across condi-
tions. CTen[66] and CellMarker[67] platforms were used to define cell types
from the t-SNE cluster analysis.

Gene Set Enrichment Analysis: GO and KEGG enrichment analyses
were performed using the clusterProfiler R package[68] for DEGs of a dis-
tinct subpopulation based on the average fold change compared with
other subpopulations. Enrichment scores were calculated by GSEA.[69]

In generalized GSEA, a gene set is considered enriched if the statisti-
cal significance (P-value < 0.05) of its enrichment score is below the
threshold. Network enrichment analysis was performed using Metascape
(http://metascape.org).

Stemness, Telomerase Activity, and CSC Specific Signature Scores: Gene
sets reflecting the expression signature of the “stemness” (including 63
genes)[9] and “telomerase” (including 43 genes)[14a] were identified in
previous reports and validated. The telomerase score signature was de-
rived from an unsupervised comparison of telomerase positive and neg-
ative cells, and the resulting genes were further narrowed by overlapping
with genes overexpressed in embryonic stem cells.[14a]

Pseudotemporal Analysis of the Cell Lineage Trajectory: Single-cell scaled
expression data were analyzed with Monocle as previously described.[34]

Briefly, scaled data derived from Seurat were input into Monocle, which
orders single cells according to subpopulations using an unsupervised al-
gorithm method. Each cell can be viewed as a point in a high-dimensional
state space, and Monocle reconstructs the trajectory cells according to
pseudotime. Hierarchical clustering analysis was performed for differen-
tially expressed genes using expression values from all ordered cells.

Copy Number Inference from Single Cell RNA-seq Data: Initial CNVs for
each region were estimated by inferCNV R package (https://github.com/
broadinstitute/inferCNV).[1b] Raw count data were extracted from the Seu-
rat object by “GetAssayData()” function. For the inferCNV analysis the fol-
lowing parameters were used: “denoise,” default hidden Markov model
(HMM) settings, and a value of 0.1 for “cutoff.” The chromosomal ex-
pression patterns were estimated from the moving averages of 101 genes
as the window size and adjusted as centered values across genes.

Cell Type Signature of TCGA Bulk expression Profiles of CRCs: Bulk
CRC TCGA (The Cancer Genome Atlas) RNA-seq data (htseq_fpkm-uq)
was downloaded from UCSC Xena website (http://xena.ucsc.edu/) and
log2(fpkm-uq+1)-based gene quantifications along with additional tumor
and clinical annotations. To further examine the classification of TCGA
samples, all genes were identified preferentially expressed in each of the
11-subtypes and scored single cells by the 11-subtype gene-sets. For each
cell type identified in this study, cell type-specific genes are defined as
those: 1) with an AUC value above 0.7; and 2) P < 0.001 when compar-
ing cells classified into that cell type to those in each other cell type.

Survival Analysis: Kaplan–Meier log-rank tests were performed using
default parameters in SurvExpress,[38] an online biomarker validation tool
and database. The tool takes gene lists as input, and in this case, differ-
entially expressed genes with AUC>0.8 were used in each subpopulation.
There are 22 Colon databases available, and the “COADREAD-TCGA Colon
and Rectum adenocarcinoma June 2016” dataset was selected that in-
cluded 467 samples (http://bioinformatica.mty.itesm.mx:8080/Biomatec/
SurvivaX.jsp). Survival analysis and risk assessment of the human CRC
data set were applied. The samples were divided into two groups accord-
ing to the average expression level of the genes in the gene list.
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Cell Cycle Analysis: Cell cycle analysis was performed according to the
previously described method.[9] Briefly, average relative gene expression
of a core set of 43 G1/S and 55 G2/M genes from the corresponding ex-
pression clusters in several previous studies were used to derive cell cy-
cle scores (Table S5, Supporting Information). Scatter plot distribution of
all cells along G1/S score and G2/M score revealed an approximate cir-
cle. The putative state of cycling cells was defined based on a previous
description.[9]

Immunofluorescence Microscopy: After being deparaffinized, rehy-
drated and washed in PBS, paraffin sections were incubated with 3% H2O2
for 10 min at room temperature, subjected to high pressure antigen recov-
ery sequentially in 0.01 m citrate buffer for 3 min, permeabilized in 0.1%
Triton X-100 for 30 min, blocked with 5% goat serum with 0.1% BSA in
PBS for 2 h at room temperature, and then incubated with the primary an-
tibodies against MKI67 (AB9260, Millipore), PCNA (sc-25280, Santa Cruz),
E-CADHERIN (20874-1-AP, Proteintech), TNFRSF19 (sc-398526, Santa
Cruz), BAMBI (sc-100681, Santa Cruz) KRT18 (A1022, ABclonal), CLDN4
(sc-376643, Santa Cruz), CXADR (sc-373791, Santa Cruz), or SLC12A2 (sc-
514858, Santa Cruz) overnight at 4 °C. This was followed by washing in PBS
three times and incubation with secondary antibodies (Goat Anti-Mouse
IgG (H+L) FITC 115-095-003, Jackson; Goat Anti-Rabbit IgG (H+L) Alexa
Fluor 594 A-11037, Life technology) for 2 h at room temperature. Block-
ing solution without the primary antibody served as a negative control.
DAPI/Hoechst in Vectashield was used for staining of the nuclei. Fluores-
cence was imaged using a Zeiss LSM710 confocal microscope.

Immunofluorescence-Telomere FISH: Sections for immunofluores-
cence were treated as described above. After incubation with secondary
antibody, sections were rinsed in PBS three times for 5 min, fixed with 2%
paraformaldehyde for 2 min, rinsed again, dipped through an ethanol se-
ries (70%, 95%, 100%), and air-dried. Samples were denatured at 80 °C for
3 min and hybridized with the telomere PNA probe (0.5 µg mL−1, F1002,
Panagene) in the dark for 2 h. Sections were washed in washing buffer
(50% formamide, A100314-0500; 10 × 10−3 m Tris–HCL PH7.2, T2069-
100ML, SIGMA) twice for 15 min, rinsed in PBS three times for 5 min and
dried. Hoechst in Vectashield was used for nucleus staining.

Gene Knockout by CRISPR/Cas9: pSpCas9(BB)-2A-Puro (PX459) was
a gift from Feng Zhang (Addgene plasmid # 48139). Guide RNAs were
designed using the online design tool available at http://crispr.genome-
engineering.org/. PX459 was digested with BbsI and then gel purified. Two
pairs of oligos including the target sequences were annealed and cloned
into BbsI-digested PX459 vector. Primers used for CRISPR/Cas9 experi-
ments are listed in Table S9 (Supporting Information).

Gene Expression by Quantitative Real-Time PCR: Total RNA was iso-
lated from cells using RNeasy mini kit (Qiagen). Two micrograms of RNA
was subjected to cDNA synthesis using M-MLV Reverse Transcriptase (In-
vitrogen). Real-time quantitative PCR reactions were set up in duplicate
with the FastStart Universal SYBR Green Master (Roche) and run on the
iCycler iQ5 2.0 Standard Edition Optical System (Bio-Rad) using primers
detailed in Table S9 (Supporting Information). Each sample was repeated
3 times and analyzed using ACTIN as an internal control by comparative
Ct (cycle threshold) method.

Analyses of Apoptosis by Flow Cytometry: Annexin V-FITC antibody im-
munofluorescence was used to perform a fluorescent analysis of apopto-
sis and necrotic cells. Cells were harvested, centrifuged at 1000 rpm for
5 min, and washed two times with precooled PBS buffer. 1 × 105 cells
were collected and incubated with Annexin V-FITC in the provided binding
buffer for 20 min in dark at 4 °C, according to the instruction of the An-
nexin V-FITC apoptosis detection Kit (C1063, Beyotime). They were then
subjected to flow cytometer (FACS Calibur, BD) analysis at 488 nm of
emission.

Data Presentation: Correlation plots, box plots, scatter plots, vio-
lin plots, bar graphs, and histograms were generated using the ggplot2
R package (version 2.2.1). Heatmaps were generated using R package
pheatmap (version 1.08), which were both obtained from CRAN (http:
//cran.r-project.org/).

Statistical Analysis: The data and number from multiple groups were
analyzed by one-way ANOVA. Pearson’s linear correlation was used to test
the correlation. Significant differences were defined as P < 0.05.

Ethics Approval and Consent to Participate: This study was approved
by the Ethical Committee at Tianjin Medical University General Hospital
(Ethical NO. IRB2014-YX-038), and informed consent was obtained prior
to investigation. For 10× Genomics, all patients were de-identified and the
standard operation procedures were approved by the Management Com-
mittee at Department of Pathology, Yale University School of Medicine
(YSOP#100).
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