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In brief

In this paper, Li et al. reveal that ribosome
dysregulation in oocytes and cumulus
cells contributes to age-related infertility
and demonstrate that rapamycin
treatment can improve pregnancy
outcomes in women by restoring protein
homeostasis.
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SUMMARY

Fertility in women decreases with age, but the molecular basis for age-related, unexplained infertility remains
elusive. Here, we reveal distinct transcriptome changes in oocytes and surrounding cumulus cells from
women in their mid-thirties, as evidenced by notably increased transcription of ribosome genes. Additionally,
meiosis genes and actin and cohesin components are downregulated in oocytes with age. Lysosomes and
proteostasis are also disrupted in cumulus cells. Moreover, DNA hypomethylation and altered heterochro-
matin deposition at specific genomic loci are linked to increased transcription of ribosome genes. Rapamycin
effectively reduces translation and promotes protein homeostasis in cumulus cells. Remarkably, short-term
rapamycin allows patients who fail repeated in vitro fertilization cycles with embryo developmental arrest to
achieve high-quality blastocysts that yield successful pregnancy and live birth. These data suggest a causal
role for elevated transcription of ribosome genes in aging oocytes and cumulus cells and identify rapamycin
as a promising treatment for age-related infertility. This study is registered at Chinese Clinical Trial Registry

(ChiCTR2300069828).

INTRODUCTION

The age-related decline in female fertility is attributable primarily
to oocyte quality,’ which impairs embryo development and
causes repeated in vitro fertilization (IVF) failures. In human oo-
cytes, chromosome segregation errors increase with age, espe-
cially after the mid-thirties. Meiotic defects leading to embryonic
aneuploidy are the prime driver of reproductive aging in
women.”® Factors contributing to aneuploidy include preco-
cious separation of sister chromatids, chromosome misalign-
ment, spindle disruption, and deficient spindle checkpoints.®>™®
Embryos resulting from the fertilization of aneuploid oocytes
typically arrest during development or miscarry.® The rate of
chromosome segregation errors accelerates from 35 years of
age onward.®

)

In addition to chromosome aneuploidy, the DNA damage
response, oxidative stress, mitochondrial dysfunction, telo-
mere attrition, autophagy, inflammation, and fibrosis also
contribute to ovarian aging.'®'® The human ovary contains
several cell types, particularly oocytes and surrounding
cumulus cells.’®"” Cumulus and granulosa cell connections
enable bidirectional communication with oocytes. These pro-
teins involved in bidirectional communication are essential for
normal folliculogenesis and germ cell development.'®'® DNA
methylation provides another hallmark of cellular aging (epige-
netic aging clocks), enabling estimation of biological age for
most tissues across the entire life course.?®?' Epigenetic ag-
ing clocks used to accurately predict biological age have been
identified in somatic cells but are more complex in the context
of oocyte aging.””
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Figure 1. Age-related transcriptome changes in single oocytes

(A) Heatmap showing the expression signatures of specifically expressed genes in oocytes with increasing age, and aging-specific genes were identified based
on age-gene expression correlation, with an absolute correlation coefficient cutoff of |r| > 0.4 and statistical significance (adjusted p value < 0.05). The value for
each gene is the row-scaled Z score, and the color key from blue to red indicates the relative gene expression level from low to high, respectively. The index
number and age of each sample are marked at the bottom of the heatmap; n = 48 for the RNA-seq data. Representative enriched terms of aging-related genes are
marked on the right.

(B) Pearson correlations between age and the expression levels of genes related to ribosomes in oocytes. The size of the circles represents the expression levels
of genes. The gene expression level was quantified as transcripts per million (TPM).

(C) Gene set enrichment analysis (GSEA) indicating that upregulated genes in oocytes >34 years (including 34) were highly enriched in ribosome-related gene
sets. Red, upregulated genes in oocytes >34 years; NES, normalized enrichment score; FDR, false discovery rate.

(D) Violin plot displaying the expression of ribosomal subunit-related genes in oocytes from donors >34 years old compared with those <34 years old; genes were
obtained from gene sets including cytosolic large and small ribosomal subunits via GSEA.

(E) Heatmap showing the expression levels of key genes related to ribosomes in oocytes from donors <34 years old and donors >34 (including 34) years old. The
bar plot shows —log10 (p value), computed in DESeq2 via the Wald test; the black dotted line represents —log10 (0.05).

(legend continued on next page)
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Previous single-cell sequencing studies arbitrarily grouped the
age as young or old to explore the impact of aging on female oo-
cytes or ovaries.?*® Through integrated multi-omics analysis,
including transcriptome analysis via correlation analysis with
age, the methylome, and the histone modification, we identified
molecular changes in aging oocytes and cumulus cells (CCs).
Notably, both oocytes and CCs exhibit striking transcriptional
changes by age 34 without artificial grouping by age in our study,
providing a potential molecular basis for the declining fecundity
in women. Both oocytes and CCs display consistently upregu-
lated ribosome genes, which promote protein translation.
Notably, the inhibition of translation by rapamycin, which has
been approved for routine clinical use as an immunosuppres-
sant, greatly improves fertility in women who previously failed as-
sisted reproduction.

RESULTS

Aging-specific transcriptome profiling of human

oocytes and CCs

We obtained 71 oocyte and 114 CC samples from female donors
aged 23-48 years who consented to the experiments and multi-
omics analysis. With increasing age, the antral follicle count
(AFC), the number of follicles >12 mm, the number of oocytes
retrieved, and E2 levels decreased, whereas the levels of FSH
(follicle-stimulating hormone) and FSH/LH (luteinizing hormone)
increased (Figure S1A), which was consistent with the
decreasing ovarian reserve with increasing age.*®*’ cDNA li-
braries were constructed, and RNA was sequenced from single
oocyte and CC samples via a previously established method®®
(Figures S1B-1E; Table S1). We identified 19,098 genes ex-
pressed in oocytes and 28,761 genes expressed in CCs. The
RNA sequencing (RNA-seq) data of the oocyte and CC samples
were normalized and subjected to Pearson’s correlation anal-
ysis. We attempted various age-correlation coefficient cutoffs,
based on the principle described®®*° (also see method details
section), and showed that the cutoff of |r| > 0.4 (for oocytes) or
[r| > 0.5 (for CCs) produced significant differences (adjusted p
value < 0.05) between the age and gene expression levels
(Tables S2 and S3). Notably, a distinct shift in oocyte gene
expression profiles emerged around the age of 34, and this tran-
sition involved 517 downregulated and 253 upregulated genes in
older compared to younger oocytes (Figure 1A). Analysis of
Kyoto Encyclopedia of Genes and Genomes pathways and
Gene Ontology (GO) for genes upregulated with age revealed
several key pathways, such as Parkinson’s disease, Hunting-
ton’s disease, oxidative phosphorylation, and ribosome-associ-
ated genes (e.g., RPS15, RPL36, and RPS5) (Figures 1A and 1B).
Additionally, we took advantage of an independent transcrip-
tome dataset of a large cohort of oocytes from women of varying
reproductive age'® and validated the noticeable transition of
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gene expression profiles around the age of 34 by the age-corre-
lation coefficient cutoff of |r| > 0.4 (adjusted p value < 0.05)
(Figure S1F). Moreover, the independent dataset also revealed
the enrichment of ribosome signaling with age and upregulated
expression of ribosome-related genes in older oocytes
(Figures S1F and S1G), consistent with our findings. The robust
replication across the datasets strengthens the association be-
tween ribosome dysregulation and oocyte aging.

Gene set enrichment analysis (GSEA) further demonstrated
the upregulation of ribosome genes in oocytes from women
older than 34 years (Figures 1C-1E). The downregulated genes
in older oocytes beyond the age of 34 were enriched for impor-
tant terms related to meiosis, including centromere kinetochores
(CENPs), microtubule-organizing centers, the actin cytoskel-
eton, sister chromatid cohesion, as well as DNA repair
(Figures 1A and 1F). Meiotic deficiency with increasing age has
been reported previously,>'° validating the single-cell RNA-
seq analysis reported here. Correlation analysis revealed that
key genes, such as CENPU and CENPQ, were negatively corre-
lated with age (Figure 1G). F-Actin nucleates on chromosomes
and coordinates their capture by microtubules in oocyte
meiosis.** CENPU constitutes the centromere and facilitates
the kinetochore-microtubule attachment necessary for the cor-
rect separation of chromosomes.>**® Prematurely separated
chromosomes, associated with loss of cohesion with increasing
maternal age, are prone to incorrect segregation during
anaphase and contribute to embryo aneuploidy.**’

Aging-specific transcriptional changes in CCs are more pro-
nounced than those in oocytes, including 2,181 genes whose
expression is downregulated and 396 genes whose expression
is upregulated with maternal age (Figure 2A). The signaling path-
ways enriched with the downregulated genes included the lyso-
some (e.g., CLTA, HEXB, and GLB1) (Figure 2B), the protea-
some, and metabolic pathways (e.g., purine metabolism,
pyrimidine metabolism, and fatty acid metabolism). The upregu-
lated genes were also enriched for the ribosome, in addition to
the glycolysis/gluconeogenesis and transforming growth factor
B signaling pathways (Figure 2A). Moreover, GSEA revealed
that ribosome gene sets were upregulated and lysosome gene
sets were downregulated with age (Figures 2C and 2D). Addi-
tionally, genes involved in the response to oxidative stress
were downregulated with age (Figure 2E). The expression of
GPX4, an antioxidase that strongly inhibits lipid oxidation, was
decreased in aging primate ovaries'* and noticeably decreased
with maternal age in human CCs (Figure 2E).

Integration of translation and ribosome-related GO enrich-
ment and genes by Cytoscape revealed that in both oocytes
and CCs, genes related to ribosomes and translation increased
in expression with age (Figures 2F and 2G). Gene sets for both
the cytosolic large and small ribosomal subunits were signifi-
cantly enriched for upregulated genes in aging oocytes and

(F) Gene sets related to the attachment of spindle microtubules to kinetochores and to kinetochores themselves were enriched with downregulated genes in

oocytes >34 years old.

(G) Correlations between female age and the expression (TPM) of kinetochore-related genes, such as CENPU and CENPQ, and the correlation coefficient were
computed via the Pearson method. Statistical significance is defined as p < 0.05.

For (D), violin plot shows the kernel density of the data with box in middle representing the median, the 25% and 75% interquartile range (IQR), and the +1.5 IQR; p
value was calculated by two-tailed unpaired t test; (G) Pearson correlation. ****p < 0.0001.
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Figure 2. Age-induced changes in the transcriptome of CCs

0.5 0.7

(A) Heatmap showing the expression signatures of genes specifically expressed in CCs with age, and aging-specific genes were identified based on age-gene
expression correlation, with an absolute correlation coefficient cutoff of |r| > 0.5 and statistical significance (adjusted p value < 0.05). n = 30 RNA-seq data points.
Representative enriched terms of aging-related genes are marked on the right.

(B) Pearson correlations between age and the expression levels of genes related to lysosomes in CCs.
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CCs (Figures 1C and 2D). Additionally, oocytes expressed genes
encoding mitochondrial ribosomal proteins, including MRPL17,
MRPL53, MRPS25, MRPL34, MRPL43, MRPS24, and
MRPL49, which are involved in the composition of mitochondrial
ribosomes and protein synthesis within the mitochondrion
(Figure 2F).

Together, oocytes and the surrounding CCs display distinct
transcriptome changes around the mid-thirties, when age-
related fertility loss accelerates.

Ribosome dysregulation and disruption of protein
homeostasis in CCs
Increased expression of ribosome genes has not been reported
previously in association with oocyte or ovarian aging. Further-
more, when we compared RNA-seq data between relatively older
and younger women under the age of 34, the vast majority of genes
related to cytosolic large and small ribosomal subunits presented
increased expression in both CCs and oocytes from older women
(Figures 1D and 3A). Nucleoli are the nuclear structures respon-
sible for ribosome biogenesis, and an enlarged nuclear area and
a reduced number of nucleoli are associated with premature ag-
ing.*® We evaluated the nucleolar area as defined by nucleolin
staining in CCs. An increase in total nucleolar area (Figures 3B
and 3C) and a decrease in nucleolar number were observed in
aged CCs (Figure 3D). Additionally, we quantified the levels of
28S and 18S ribosomal RNAs (rRNAs). The content of 18S and
28SrRNAs increased with age in CCs (Figure 3E). Consistently, oo-
cytes from reproductively aged mice displayed increased ribo-
some numbers associated with altered nucleolar architecture.*®
Taken together, these results suggest that ribosome components
and associated translation could increase in CCs with age.

Mechanistic target of rapamycin (mTOR) tightly regulates pro-
tein synthesis and autophagy by phosphorylating substrates.*
The aging of CCs was accompanied by an increase in p-mTOR
protein and a decrease in the autophagy-related protein LC3-II
(Figure S2A). L-homopropargylglycine incorporation for protein
synthesis assays further confirmed that protein synthesis
increased significantly in aging CCs (Figure S2B). To further
verify ribosome and protein synthesis dysregulation, rapamycin
was utilized to inhibit ribosome biogenesis and protein synthesis
via mTOR.*" Additionally, cycloheximide is commonly used to
inhibit protein synthesis. Notably, 0.5 pM rapamycin effectively
attenuated the increase in protein synthesis induced by aging
CCs (Figure S2C). Moreover, senescence-associated -galacto-
sidase activity was suppressed in aged CCs after rapamycin or
cycloheximide treatment (Figure 3F).

Additionally, RNA-seq revealed decreased expression of lyso-
some- and proteasome-related genes with age (Figures 2A and
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3G). We used LysoTracker to label lysosomes and detected that
the activity of lysosomes indeed dramatically decreased with
age (Figures 3H and S2D). Aberrant expression of ribosomal
and lysosome-related genes with age may disrupt protein
homeostasis. To examine proteostasis, we performed fluores-
cence analysis with Proteostat dye in CCs of different ages. Pro-
teostat becomes highly fluorescent upon binding to the amyloid-
type B sheet tertiary structure of protein aggregates.*
Compared with young CCs, aging CCs displayed increased fluo-
rescence of Proteostat (Figures 3l and S2E). The protein aggre-
gates were only slightly increased in oocytes with increasing age
(Figure S2F). The accumulation of protein aggregates in aging
CCs may imply increased protein synthesis and/or decreased
protein degradation, which could be linked to the upregulation
of ribosome-related genes and the downregulation of lyso-
some-related genes, disrupting protein homeostasis.

Age-associated dynamics of the DNA methylome in
oocytes and CCs

The epigenetic clock resulting from DNA methylation underlies
somatic aging.”®?"**** To understand the molecular mecha-
nisms underlying the changes in the transcriptome with age,
we performed low-input post-bisulfite adaptor tagging DNA
methylation sequencing to delineate the DNA methylome of oo-
cytes or CCs. A cohort of females was recruited (Table S1) and
divided into old (>34 years) and young (<34 years) groups on
the basis of transcriptome analysis. Two independent biological
replicates per age group were assessed, and robust data were
obtained for all the oocyte samples, with reproducible replicates
(Figure S3A). A total of 112,510,677 reads per group and approx-
imately 11,259,424 CpGs in the human genome were covered in
each sample (Table S4). In general, aging led to a slight increase
in DNA methylation in oocytes (Figure S3B), and old oocytes
contained a slightly greater proportion of highly methylated se-
quences than did young oocytes (Figures S3C-S3G).

We observed a peak of differentially methylated regions
(DMRs) located immediately upstream and downstream of tran-
scription start sites (Figure S3H). The majority of DMRs were
located in transposable element (TE) and intergenic and intronic
regions, whereas the promoter and exon regions contained 409
and 373, respectively, of the DMRs, with far more hypermethy-
lated than hypomethylated DMRs (Figure S3l). The methylation
levels in older oocytes were greater than those in younger oo-
cytes in terms of genomic features, including 3’ UTRs, exons, in-
tergenic regions, introns, promoters, and TEs (Figure S3J).
Moreover, the DMRs of genes were enriched mainly in important
signaling pathways, such as the cAMP, oxytocin, and calcium
signaling pathways (Figure S3K). Furthermore, association

(C and D) GSEA highlighting that upregulated and downregulated genes in CCs >34 years old were enriched in gene sets related to ribosomes and lysosomes,

respectively.

(E) Response to oxidative stress was significantly enriched in downregulated genes in CCs from individuals >34 years old. Key genes are shown in a bar plot, and
the color key indicates the correlation coefficient, which was calculated via the Pearson method on the basis of female age and gene expression levels. The
vertical axis represents —log10 (p value); the black dotted line indicates —log10 (0.05).

(F and G) Integration of translation- and ribosome-related GO enrichment and genes by Cytoscape in female oocytes (F) and CCs (G). Rectangles represent GO
enrichment, and ovals represent genes associated with GO enrichment. The color key from yellow to orange indicates the age coefficient from low to high,
respectively. The age coefficient was calculated via Pearson correlation between the donor age and gene expression level (TPM) via “cor” in R software. The
width of the edge indicates betweenness, reflecting the amount of control that this node exerts over the interactions of other nodes in the network.
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Figure 3. Ribosomes and lysosomes in aging human CCs
(A) Violin plot showing the expression of ribosomal subunit-related genes in CC samples from donors >34 years (including 34) compared with those from donors
<34 years old. Genes were obtained from gene sets, including large and small cytosolic ribosomal subunits, via GSEA.
(B) Representative immunofluorescence image of the nucleolar protein nucleolin (red) in CC samples of different ages from four independent experiments. Scale

bar, 10 pm.
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(C) Comparison of nucleolar area between the <34-year-old and >34-year-old groups. The total area of nucleolar cross-sections per CC was determined by
boundaries of nucleolin immunofluorescence. n = 600 cells, and each CC sample contained 100 cells. A total of 6 CC samples from 6 women in each age group

were collected (5 independent experiments).

(D) Comparison of the percentages of the number of nucleoli between the <34-year-old and >34-year-old groups. The calculated data are shown as percentages
(%), n = 600 cells. The color depth of the histogram represents the number of nucleoli.
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analysis of the transcriptome and methylation revealed several
important genes potentially regulated by methylation, such as
RPS15, which were hypomethylated and upregulated in old oo-
cytes compared with young oocytes (Figure S3L). Conversely,
CUL4B was hypermethylated and downregulated in old
oocytes compared with young oocytes (Figure S3L). CUL4B, a
component of the cullin-ring finger ligase-4 complex, is involved
in germ cell development and maternal reprogramming,
and depletion of CUL4B markedly decreases endogenous
5-hydroxymethylcytosine levels.*

Overall, there were no or only minimal changes in DNA methyl-
ation in CC samples with age (Figures S4A-S4C), which differed
from what was observed in oocytes. Moreover, CCs presented
greater DNA methylation than did oocytes (Figures S4B and
S4C versus Figures S3B and S3C). The DMRs in CC samples be-
tween the young and old groups were far less numerous than
those in oocytes (Figures S4D versus S3D), contained 2,398
DMRs hypermethylated and 2,227 DMRs hypomethylated in
old CC samples (Figure S4E), and were enriched in several
signaling pathways, including the mitogen-activated protein ki-
nase and gonadotropin-releasing hormone (GnRH) signaling
pathways (Figure S4F). Furthermore, the methylation levels of
the promoters and gene bodies of ribosome-related genes
decreased with age (Figure S4G).

Many DMRs are located on TEs, and TE expression in both oo-
cytes and CCs changes with increasing age (Figures S5A-S5E),
in particular, long interspersed nuclear element 1 (L1) is markedly
upregulated in aged CCs in association with decreased DNA
methylation of L1 (Figures S5F and S5G). Quantitative reverse-
transcription PCR analysis further confirmed that L1 RNA levels
in CCs increased with age and that the azidothymidine (AZT, L1
inhibitor) inhibited this increase (Figure S5H). Moreover, the sup-
pression of L1 expression by AZT reduced DNA damage, as evi-
denced by decreased 53BP1 foci (Figure S5I), supporting the
notion that DNA damage represents one of the phenotypes of
aging CCs. Notably, many L1 retrotransposons are located
very close to ribosome-related genes (RPS5 and RPL36A)
(Figure S5J). We also analyzed previously published RNA-seq
data from mouse embryonic stem cells*® and reported that
LINE1 RNA knockdown resulted in decreased expression of
ribosome-related genes (Figure S5K), which were upregulated
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in aging CCs. These data suggest a link between L1 and several
ribosome-related genes.

In short, the methylation of CCs also changes with age. The
elevated expression of some ribosome genes and L1 is associ-
ated with decreased DNA methylation.

Ribosome dysregulation and alteration of
heterochromatin in CCs

The level of heterochromatin also changes with age.*” We exam-
ined changes in the heterochromatin of CCs, which are typically
marked by H3K9me3 and H3K27me3. H3K9me3 immunofluo-
rescence in CCs decreased with increasing maternal age
(Figure 4A). Loss of heterochromatin has also been reported in
human prophase l-arrested oocytes with age.*® However,
H3K27me3 immunofluorescence intensity did not differ between
young and old CCs (Figure S6).

To reveal genome-wide enrichment of H3K9me3, we per-
formed CUT&Tag of H3K9me3 in CCs from young and older
women. The overall abundance of H3K9me3 in the genome
decreased with age (Figure 4B). H3K9me3 enrichment at pro-
moters also decreased with maternal age (Figure S7A).
H3K9me3 was primarily enriched in intergenic regions, with its
enrichment at distal intergenic region slightly decreasing with
age (Figure S7B). Moreover, H3K9me3 peaks were found with
a specific distribution with age, including 9,999 young-specific
H3K9me3 peaks that decreased with age and 17,208 old-spe-
cific H3K9me3 peaks that increased with age (Figure 4C).
Through correlation analysis, these peaks were highly correlated
within the group but differed between young and older CCs
(Figure S7C).

The young-specific H3K9me3 peaks were detected in genes
related to misfolded protein binding, preribosome, regulation
of ribonucleoproteins, and rRNA processing, which are involved
in ribosome biogenesis, and the H3K9me3 enrichment on these
genes was lower in old CCs than in young CCs (Figures 4D and
4E). In contrast, genes marked by old-specific H3K9me3 peaks
were associated with protein localization to microtubules, nega-
tive regulation of cytoplasmic translation, regulation of cell prolif-
eration, and oxidoreductase activity (Figure 4D). The old-specific
H3K9me3 peaks enriched in genes related to the negative regu-
lation of cytoplasmic translation were reduced in young CCs

(E) Abundance of 18S and 28S rRNAs determined by gPCR in CC samples from donors of varying ages (n = 22; 24-44 years), normalized to GAPDH mRNA. The
coefficient was calculated via Pearson’s correlation, and the p values for 18S and 28S rRNA abundance changes with age are shown.

(F) SA-p-gal staining of female CCs (CCs-56, 26 years and CCs-60, 37 years) treated with or without rapamycin (—1: 0.25 pM and —2: 0.50 pM) or CHX
(cycloheximide, 0.30 uM) for 3 days. Scale bar, 100 pm. n = 3 (for each independent experiment, 20 visual fields were randomly selected for statistical analysis).
(G) Violin plot showing the expression of lysosome-related genes (17 genes) in CC samples from donors >34 years compared with those <34 years. Lysosome-
related genes were selected from lysosomes via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and met the criterion of an age coefficient of at
least —0.5.

(H) Representative immunofluorescence images of CC samples from donors of varying ages stained with LysoTracker (red, acidic organelles; lysosomes) and
Hoechst (blue, nuclei). The cells were treated with the lysosome inhibitor bafilomycin A (BafA, 700 nM) for 6 h as a control. Scale bar, 10 pm. Right: the integrated
intensity of LysoTracker fluorescence was estimated by ImageJ; n = 480; each sample contained 80 cells, with a total of 6 independent samples per group
(5 independent experiments).

(I) Representative immunofluorescence images of CC samples from donors of varying ages stained with Proteostat (red, protein aggregates) and Hoechst (blue,
nuclei). The cells were treated with the proteasome inhibitor MG132 (10 uM) for 12 h as a control. Scale bar, 10 pm. Right: integrated intensity of Proteostat
fluorescence estimated with ImageJ; n = 480; each sample contained 80 cells, with a total of 6 independent samples per group (5 independent experiments).
(C, F, H, and |) Data are represented as mean + SEM. (C, H, and I) Mann-Whitney test; (F) ANOVA tests for multiple comparisons; (A and G) violin plot shows the
kernel density of the data with box in middle representing the median, the 25% and 75% interquartile range (IQR), and the +1.5 IQR; p value was calculated by
two-tailed unpaired t test; (D) chi-squared test; (E) Pearson correlation. *o < 0.05, ***p < 0.001, and ***p < 0.0001.
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Figure 4. H3K9me3 abundance on ribosome genes decreases with age
(A) Immunostaining of H3K9me3 (red) in CCs (Passage 2) from young women and women of advanced reproductive age. Scale bars, 10 pm. n = 200 cells (from
three young donors aged 28, 31, and 31 years or three older donors aged 38, 39, and 43 years).
(B) Violin plots displaying the normalized signal of H3K9me3 at peaks identified by CUT&Tag in CCs collected from two repeated experiments, including paired
young and relatively old women (30 vs. 41 or 31 vs. 39 years old).
(C) H3K9me3 enrichment around young-specific and old-specific H3K9me3 peaks.
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(Figure 4F). Furthermore, H3K9me3 enrichment at the promoter
and gene body of ribosome-related genes was reduced in the
old CCs (Figure 4G). The altered H3K9me3 enrichment in these
terms implied that the transcriptional inhibition of H3K9me3 on
ribosomal biogenesis- and translation-related genes may be
abrogated during aging, corroborating the increased transcrip-
tion of ribosomal genes and potential promotion of translation.

Werner syndrome is a premature aging disorder caused by
WRN protein deficiency. We analyzed the H3K9me3 chromatin
immunoprecipitation sequencing data of WRN~'~ hMSCs (hu-
man mesenchymal stem cells) published previously.*® Consis-
tently, H3K9me3 enrichment on ribosome-related genes was
reduced in WRN~~ hMSCs (Figure S7D), accompanied by
increased expression of ribosome-related genes (Figure S7E).
Furthermore, CCs treated with chaetocin (H3K9me3 inhibitor)>°
exhibited upregulated expression levels of ribosome-related
genes, such as RPS19, RPL22, and RPL36A (Figure S7F). Com-
bined with the aforementioned results, the changes in the
expression of ribosome-related genes during aging can be regu-
lated by alterations in heterochromatic H3K9me3.

The lysosome-related genes presented increased H3K9me3
enrichment in gene body regions, whereas promoter regions
did not change with age (Figure S7G), which was correlated
with downregulation of lysosome-related genes. In addition,
genes related to oxidoreductase activity were enriched with
the old-specific H3K9me3 peak (Figures 4D and S7H) and
were downregulated with age (Figures S7I and S7J). These
data suggest that H3K9me3 enrichment at specific loci with
increasing age may influence the expression of genes related
to lysosomes and oxidoreductase activity in CCs.

Rapamycin intervention in reproductively aged mice
Upregulation of ribosome-related entries was identified in old
mouse oocytes by comparative transcriptome analysis with
young oocytes, suggesting that ribosome dysregulation was
conserved between human and mouse oocytes during aging
(Figures S8A and S8B). We identified 53 ribosome-related genes
upregulated in aged mouse oocytes (Figure S8C) and five ribo-
some-related genes, similar to those in human oocytes,
including Rps5, Mrps24, Mrpl53, Rpl36, and Rpl5 (Figure S8D).
We took advantage of rapamycin to inhibit mTOR and transla-
tion to explore its potential function in delaying aging. Oocytes
and CCs were collected from the ovaries of young (2-month-
old) and old (10-month-old) mice (Figure S9A). Rapamycin at
0.5 pM blocked the increased phosphorylation of 4E-BP1 and
S6 in old CCs, which regulated translation and ribosome biogen-
esis (Figures S9B and S9C). Furthermore, rapamycin inhibited
the activity of SA-p-gal and the increase in reactive oxygen spe-

¢? CellPress

OPEN ACCESS

cies (ROS) levels in old CCs (Figures S9D and S9E). The elevated
p-S6 protein level in aged oocytes during in vitro maturation (IVM)
was also decreased by rapamycin (Figure S9F), whereas the S6
protein level did not change (Figure S9G). Moreover, rapamycin
promoted the rate of IVM (Figure S9H) and reduced ROS levels in
aging oocytes (Figure S9I). Additionally, the rates of disrupted
spindles and chromosome misalignment were elevated in aging
oocytes, and rapamycin alleviated these abnormalities
(Figure S9J). Hence, rapamycin treatment effectively delays the
aging of oocytes and CCs.

Rapamycin improves embryo development and
pregnancy

We tested whether rapamycin can improve oocyte quality, sub-
sequent embryo development, and clinical pregnancy. A ran-
domized controlled clinical trial was conducted. A total of 122
women underwent screening, and 100 met the eligibility criteria.
The 100 women who provided informed consent were randomly
assigned to the control group or rapamycin group, with 50 pa-
tients in each group (Figure 5A). After randomization, patients
in the control group received a standardized GnRH agonist
long protocol, whereas patients in the rapamycin group received
a standardized GnRH agonist long protocol plus rapamycin
treatment for 21-28 days from the day of endogenous hormone
downregulation until the oocyte retrieval day. Previous clinical
trials of rapamycin and aging used doses of approximately
0.5-2.0 mg for 8 or 12 weeks.”'**? In our trial, patients in the ra-
pamycin group received 1 mg rapamycin orally daily for 21—
28 days. Three patients in the control group and five patients in
the rapamycin group did not have oocytes after controlled
ovarian hyperstimulation according to the protocol.

Among the remaining patients, 19 patients underwent IVF, and
28 patients underwent intracytoplasmic sperm injection (ICSI) in
the control group. In the rapamycin group, 12 patients under-
went IVF, and 33 patients underwent ICSI. There were no signif-
icant differences in baseline variables between patients under-
going IVF or ICSI in either the control or rapamycin groups
(Figures S10A and S10B), especially in indicators related to em-
bryologic characteristics such as the number of zygotes and em-
bryos. Therefore, the effect, if any, of different fertilization pro-
cedures was minimal for our subsequent analysis.

Notably, significantly more zygotes, embryos, and good-qual-
ity embryos were obtained in the rapamycin group than
in the control group (median value, zygotes: 3.0 vs. 2.0,
p =0.012; embryos: 2.0 vs. 1.0, p = 0.001; and good-quality em-
bryos: 2.0 vs. 1.0, p < 0.001) (Figures 5B and 5C). The number of
metaphase |l oocytes retrieved and baseline variables, including
anti-mullerian hormone (AMH), FSH, and AFC, did not differ

(D) Functional enrichment analysis of genes marked by young-specific (upper) and old-specific (lower) H3K9me3 peaks.

(E) Normalized signals of H3K9me3 peaks identified from genes associated with ribosome biogenesis included preribosomes, small subunit precursors, positive
regulation of rRNA processing, and regulation of ribonucleoprotein complex localization in young (30 and 31 years) and old (39 and 41 years) CCs. The center
indicates the center of the peaks. Right, the boxplot showing the signal of H3K9me3 enrichment.

(F) Normalized signals of H3K9me3 peaks identified from genes related to the negative regulation of cytoplasmic translation in young and old CCs.

(G) Normalized signal of H3K9me3 peaks in young and old CCs identified from promoters (+1,000 bp around the TSS) and gene bodies (from the TSSs to the
TESs) associated with upregulated ribosome-related genes identified via RNA-seq.

(A) Data are represented as mean + SEM. (B) Violin plot shows the kernel density of the data with box in middle representing the median, the 25% and 75%
interquartile range (IQR), and the +1.5 IQR. (E-G) Box represents the median, the 25% and 75% IQR, and the +1.5QR. (A, B, and E-G) Two-tailed unpaired t test.

**p < 0.001 and ***p < 0.0001.
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Table 1. Outcomes of controlled ovarian hyperstimulation
L Rapamycin (N = 50) Control (N = 50)
Characteristic P value
No. of Patients Value No. of Patients Value

Age —yr 50 364+49 50 348+47 0.095

AMH (ng/mL) 50 0.98 £0.87 50 0.97+£0.72 0.743

FSH (mIU/mL) 50 12.57 +5.49 50 12.55+4.99 0.850

AFC (n)* 50 5(4,7) 50 5(4,6) 0.443

No. of Mll oocytes retrieved* 45 3(1,4) 47 2(1,3) 0.108

No. of zygotes* 45 3(2,4) 47 2(1,3) 0.012

No. of embryos on day 3* 45 2(1,3) 47 1(1,2) 0.001

No. of good-quality embryos on day 3* 45 2(1,3) 47 1(0,1) <0.001

No. of blastocysts on day 5-6* 21 2(2,2) 12 1(1,1) 0.012

No. of top-quality blastocysts on day 5-6* 21 1(0,2) 12 0(0,0) 0.043

D
Table 2. Outcomes of clinical pregnancy
Rapamycin Control Absolute Difference Risk R.atio in
Outcome (N = 50) (N=50) between Groups Rapamycin Group P value
(95% Cl) (95% Cl)

No. of patients undergone ET 40 39 — — —
Day 3 20 28 — — —
Day 5-6 20 11 — — —

No. of clinical pregnancy (%) 20/40 (50.0) 11/39 (28.2) 21.8 (0.8t042.8) 1.77 (0.98 to 3.19) 0.047
Day 3 9/40 (22.5) 8/39 (20.5) 2.0(-16.1t020.1) 1.10 (0.47 to 2.55) 0.830
Day 5-6 11/40 (27.5) 3/39 (7.7) 19.8 (3.6 to 36.0) 3.58 (1.08 to 11.85) 0.021

Figure 5. Rapamycin improves fertility in human IVF clinics

(A) Enrollment and outcomes.

(B) Poor-quality (arrested or fragmented) and good-quality embryos on day 3 (upper); poor-quality and top-quality blastocysts on day 5 (lower); scale bars,
100 pm.

(C) Outcomes of controlled ovarian hyperstimulation in the control and rapamycin groups. The plus-minus values are the means + SDs. The asterisks indicate the
medians (Q1, Q3). Differences between the two groups were calculated via the Wilcoxon test. Embryos were scored according to morphological criteria, with

(legend continued on next page)
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between the control and rapamycin groups (Figure 5C). The
number and top quality of blastocysts in the rapamycin group
were significantly greater than those in the control group (median
value, blastocysts: 2.0 vs. 1.0, p = 0.012; top-quality blasto-
cysts®®: 1.0 vs. 0, p = 0.043) (Figures 5B and 5C). These results
indicate that the addition of rapamycin to patients can effectively
improve oocyte quality and subsequent embryo development
following the fertilization of retrieved oocytes.

To date, 40 of 45 patients (88.9%) in the rapamycin group and
39 of 47 patients (83.0%) in the control group completed embryo
transfer (Figure 5A), and 20 of 40 patients in the rapamycin group
and 28 of 39 patients in the control group opted to undergo
transfer of day 3 embryos, whereas 20 of 40 patients in the rapa-
mycin group and 11 of 39 patients in the control group opted to
undergo transfer of day 5-6 blastocysts (Figure 5D). The decision
for embryo transfer largely depended on embryo quality on day
3, when more good-quality 4- to 8-cell embryos were available,
and the embryos were subjected to further culture to the blasto-
cyst stage. After embryo transfer, the rate of clinical pregnancy in
the rapamycin group was significantly greater than that in the
control group (50.0% vs. 28.2%), with a rate ratio of 1.77 (95%
confidence interval [Cl], 0.98 to 3.19; p = 0.047) (Figure 5D).
The pregnancy rate might differ between blastocyst-stage (day
5-6) embryo transfer and cleavage-stage (day 3) embryo trans-
fer. Hence, we separately compared the pregnancy rates for pa-
tients who underwent day 3 embryo transfer and those who un-
derwent day 5-6 embryo transfer. The clinical pregnancy rate of
the patients who underwent day 5-6 blastocyst transfer in the ra-
pamycin group was significantly greater (o = 0.021) than that of
the control group (27.5% vs. 7.7%; rate ratio, 3.58; 95% ClI,
1.08 to 11.85) (Figure 5D). These findings suggest that blastocyst
transfer in patients treated with rapamycin can be superior to
day 3 embryo transfer in terms of clinical pregnancy. The transfer
of top-quality blastocysts to patients receiving rapamycin
improved the clinical pregnancy rate.

Furthermore, we tracked the live birth rate, and thus far, 10 of the
14 patients (71.4%) in the rapamycin group who were followed up
to their due date had delivered live-born infants, and 6 of the 8 pa-
tients (75.0%) in the control group had delivered live-born infants
(Tables S5 and S6). Some patients had not yet reached the appro-
priate date (rapamycin, 6 patients; control, 3 patients), and the cur-
rent live birth rate did not differ between the rapamycin and control
groups. These results, nevertheless, indicate that rapamycin does
not negatively impact the live birth rate. The results of clinical trials
thus far indicate that rapamycin noticeably increases oocyte and
embryo quality and the clinical pregnancy rate. Moreover, the
pregnant patients had successful live birth delivery rates at least
comparable to those of the controls who did not receive rapamy-
cin, further confirming the safety of rapamycin.
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We also examined the protein levels of S6 and p-S6 in CCs
collected from patients who received rapamycin compared
with those collected from controls who were not treated with ra-
pamycin. Rapamycin indeed reduced p-S6/S6 levels (Figure
S10C). Further refinement of the rapamycin dosage and time
and duration of treatment may further increase the efficacy of
pregnancy and fertility.

DISCUSSION

We propose that elevated transcription of ribosome genes and
components and aberrant proteostasis impair oocytes and their
surrounding CCs, providing a mechanism to explain age-related
poor embryo development and infertility. Transcriptome analysis
of single oocytes and CCs from aged women undergoing IVF re-
vealed aberrant upregulation of ribosome genes by the mid-
thirties, and this consistent characteristic could be explained
by the close interactions and communication between oocytes
and CCs. The potential alterations in the state of these two cell
types are likely to affect each other, thereby affecting folliculo-
genesis and oogenesis.””°® Mechanistically, the elevated tran-
scription of ribosome genes could be attributable to the loss or
reduction of heterochromatin and altered methylation. Indeed,
inhibition of H3K9me3 notably increases the expression levels
of ribosome-related genes, such as RPS19, RPL22, and
RPL36A. RPL22 is a driver of cellular senescence, promotes
the degradation of the heterochromatin proteins HP1y and
KAP1, and stimulates the transcription of rRNA.>? Interestingly,
TORC1 promotes the transcription of rRNA and ribosome-
related genes by preventing heterochromatin formation.®°
Aged hematopoietic stem cells and fibroblasts from patients
with Hutchinson-Gilford progeria syndrome (premature aging
disorders) also exhibit increased expression of ribosomal genes
or proteins and rRNA hypomethylation.*®°" Thus, these previous
studies and our findings support the notion that ribosome dysre-
gulation is tightly linked to heterochromatin and DNA methylation
during aging.

Our data also confirmed previous findings in oocytes that
meiosis, the microtubule and actin cytoskeleton, and cohesion
gene expression decrease with maternal age.” Defective spindle
and actin assembly and chromosome misalignment are linked to
high aneuploidy levels in older eggs, contributing to age-related
infertility.®>~°> Additionally, the expression of lysosomal genes in
CCs decreases with increasing maternal age, and aberrant pro-
tein aggregates accumulate. Like in mouse oocytes,®® human
oocytes do not show a significant increase in protein aggregation
with age. Protein degradation mechanisms in oocytes might
differ from those in CCs, and this warrants further investigation.
Our findings that increased transcription of ribosome-related

“good” defined as grade I: a cell number of 7-9, even cell size, less than 10% fragmentation, and no multinucleation. Day-5/6 blastocyst cultures were performed
in cases of poor embryo quality or at the request of a patient.”*>* A top-quality blastocyst-stage embryo is at least in the expanded blastocyst stage (BL3) and has
atype A inner cell mass (in which cells are tightly packed, with many cells present) and a trophoectoderm that is either type A (with many cells forming a cohesive

55,56

epithelium) or type B (with few cells forming a loose epithelium).

(D) Outcomes of pregnant patients with or without rapamycin treatment (control). p values were calculated via the chi-square test. Clinical pregnancy was defined

as the observation of a gestational sac via ultrasonography.

(C and D) Continuous data are represented as the mean + SD or medians (Q1, Q3); categorical data are represented as frequencies and percentages. (C)

Wilcoxon test; (D) chi-square test.
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genes is accompanied by increased protein aggregation and
disrupted proteostasis in aging CCs are consistent with findings
that increased ribosome pausing and collision result in accumu-
lated protein aggregation and impaired proteostasis during ag-
ing in C. elegans and yeast models.®” Aging-induced ribo-
some-related quality control overload may require increased
expression of ribosome-related genes, further impairing proteo-
stasis. Ribosomes are maintained in a dormant state and trans-
lationally repressed in vertebrate eggs (zebrafish and Xenopus
laevis) and transition to an active state after fertilization.®®
Notably, ribosome activity is downregulated in the human popu-
lation with exceptional longevity from Hainan Province, China.®®
Similarly, we show that inhibiting ribosome biogenesis and pro-
tein synthesis could abrogate oocyte and CC senescence,
improving embryo quality and development and thus pregnancy.

Taken together, increased transcription of ribosome genes is
implicated as a potential player in the deterioration of oocyte
quality and unexplained infertility with age and can serve as a po-
tential target to improve fertility. Rapamycin, which is commonly
employed as an immunosuppressant for organ transplantation
and as an anti-aging strategy, may play a role in the treatment
of infertility in older women. Some clinical trials on rapamycin
and aging have confirmed that oral rapamycin can affect eryth-
rocyte parameters and senescence-associated secretory
phenotype-related factors in elderly individuals,®’*>* which re-
flects the systemic effect of rapamycin on patients. However,
in our clinical trial, whether rapamycin improves clinical preg-
nancy in infertile women is direct or based on systemic effects,
and larger and more comprehensive clinical trials are warranted.

Limitations of the study

The clinical implications and translational potential of our find-
ings necessitate further validation in larger patient cohorts.
Another limitation is the sample size of the sequencing; however,
through multiple sequencing methods, systematic experimental
validation, and critical intervention experiments, we have
demonstrated that ribosome represents a promising therapeutic
target for female infertility.
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ated in this study have been deposited in the Genome Sequence Archive
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Patient donators in this study
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Roche Complete Protease Inhibitor EDTA-Free Sigma-Aldrich Cat#5056489001
tablets

Critical commercial assays

Senescence-associated f-galactosidase staining Beyotime Cat#C0602

kit

RNeasy RNA Micro Kit QIAGEN Cat#74034

(Continued on next page)
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Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

PROTEOSTAT® Aggresome detection kit
TruePrep DNA Library Prep Kit V2 for lllumina®

Enzo Life Sciences
Vazyme Biotech

Cat#ENZ-51035-K25
Cat#TD503-02

QlAamp® DNA Micro Kit QIAGEN Cat#56304
BeyoClick™ HPG-594 Protein Synthesis Assay Kit Beyotime Cat#P1209S
Deposited data

The raw RNA-seq data for female oocytes and This paper NGDC: HRA005257
cumulus cells

The raw MethylC-Seq data for female oocytes and This paper NGDC: HRA005257
cumulus cells

The raw CUT&Tag data for female cumulus cells This paper NGDC: HRA005257
Oligonucleotides

Primers for qRT-PCR, see Table S7 This paper N/A

Software and algorithms

Trimmomatic (v0.38)

hisat2 (v2.1.0)
featureCounts (v1.6.3)
R (v4.4.1)

DAVID (v6.8)
Cytoscape (v3.9.1)
GSEA (v4.3.3)
Bismark (v0.19.1)

MethyIKit (1.30.0)

DESeq?2 (v1.44.0)

Bowtie2 (v2.3.4)

macs2 (v2.1.2)
ChlPseeker (v1.28.3)

deepTools (v3.2.0)
SPSS Statistics (v29.0.0)
ImagedJ

Prism (v8.4.3)

Bolger et al.”®

Kim et al.”'
Liao et al.”
CRAN

Huang et al.”

Shannon et al.”

Subramanian et al.””

Krueger et al.”®

Akalin et al.””

Love etal.”®

Langmead et al.”®

Zhang et al.®°

Yu et al.®

Ramirez et al.®?

IBM
NIH
GraphPad Software

http://www.usadellab.org/cms/index.php?
page=trimmomatic

https://ccb.jhu.edu/software/hisat2/index.shtml
http://subread.sourceforge.net/
https://www.r-project.org/
https://david.ncifcrf.gov

https://cytoscape.org
https://www.gsea-msigdb.org/gsea/index.jsp

http://www.bioinformatics.babraham.ac.uk/
projects/bismark/

https://www.bioconductor.org/packages/release/
bioc/html/methylKit.html

https://www.bioconductor.org/packages/release/
bioc/html/DESeqg2.html

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

https://pypi.org/project/ MACS2/

https://guangchuangyu.github.io/software/
ChlIPseeker/

https://deeptools.readthedocs.io/en/develop/
https://www.ibm.com/spss
https://imagej.nih.gov/ij/
https://www.graphpad.com/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice and housing conditions

Young (2-month-old) and old (10-month-old) female C57BL/6 background mice were purchased from Beijing Vital River Laboratory
Animal Technology Co., Ltd. All the mice were cared for in individually ventilated cages (IVCs) on a standard 12 h:12 h dark cycle in the
sterile animal facility at the College of Life Sciences. The mice used in this study were approved by the Nankai University Animal Care
and Use Committee, and all mouse experiments were carried out in accordance with the guidelines and relevant regulations.

Mouse cumulus cells and culture

Isolation of mouse cumulus cells (MCCs) and culture were performed as previously described.®® Briefly, PMSG was injected into the
abdominal cavity of mice 46 h before the mCCs were isolated. The mice were humanely sacrificed, and the ovaries were dissected.
Insulin syringes were used to puncture visible follicles on the surface of the ovaries under a stereomicroscope to release mCCs into
the culture medium, avoiding isolation of mMCCs from small follicles. In addition, the oocytes were filtered out via a 40-pm cell strainer
(Falcon). The isolated mCCs were subsequently washed three times and seeded in culture medium.
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Ethics statement

This study was approved by the Ethics Committee of Tiandin Medical University General Hospital (No: IRB2018-102-01), the Sixth
Medical Center of Chinese People’s Liberation Army (PLA) General Hospital (No: HZKY-PJ-2021-33), Shanxi Medical University
(No.2022SJL75) and Amcare Women’s & Children’s Hospital (No: AM2020-001-01; AM-2024001) and was conducted in accordance
with approved institutional guidelines. Written informed consent was obtained from the donors.

Human subjects

The isolated oocytes and surrounding CC samples were obtained from 100 female donors ranging in age from 23 to 48 years. The
inclusion criteria for donors undergoing IVF/ICSI with their own oocytes included maternal age and male factor infertility, and donors
were excluded from the study if they had endometriosis, cancer, chronic infections, or autoimmune or genetic diseases. The mean
ovarian reserve was 18 (range 3-55), which was represented by the antral follicle count (AFC) obtained from donors whose clinical
samples were used for RNA-seq and MethylC-seq. The clinical characteristics of all donors, including cell type and age, were
collected and are summarized in Table S1.

Clinical study design and oversight

We conducted a randomized, controlled trial at the Children’s Hospital of Shanxi and Women’s Health Center of Shanxi. The study
was approved by the Ethics Committee of Shanxi Medical University (ethics number: 2022SJL75) and conducted according to the
Declaration of Helsinki 2013, and the trial was registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/) with regis-
tration number (ChiCTR2300069828). Independent data and safety monitoring boards were established to oversee the study. All pa-
tients provided written informed consent before participation. From April 2023, a total of 122 patients underwent screening, and 100
patients met the eligibility criteria and were enrolled in the study.

Clinical study: Inclusion and exclusion criteria

The study included infertile women who had a history of more than one IVF cycle failure and who provided informed consent. The
average age of all the women was approximately 36 years. The exclusion criteria included patients with infertility due to male factors
such as oligozoospermia or azoospermia, and patients with sexually transmitted diseases, genetic diseases, uterine malformations
and a history of endometriotic cyst surgery. Patients with allergies to rapamycin and its derivatives and other serious systemic dis-
eases were excluded.

Clinical study: Sample size estimation

Referring to a published clinical trial article,®* a priori power analysis was conducted to determine the sample size required to detect
statistically significant changes associated with the clinical pregnancy rate. The study was designed to have a power of 80% at a two-
sided significance level (a) of 0.05 to detect an absolute difference of 30 percentage points in the clinical pregnancy rate between the
two groups (clinical pregnancy rate of 30% for the control group and 60% for the rapamycin group) by means of Pearson’s chi-square
test. At least 42 patients per study group were needed, a number that we increased to 50 to allow for a dropout rate of 10% (Details
are provided in Data S1).

IVF-ET procedures

The patients were randomly assigned to one of the two study groups (the control and rapamycin groups) at a 1:1 ratio, and the stat-
isticians used SPSS statistical software to generate random numbers. The odd numbers were assigned to the rapamycin group, and
the even numbers were assigned to the control group. The random numbers and grouping information were prepacked in the enve-
lope, which was unknown to the clinical investigators. When the subjects were enrolled in the group, the envelopes were opened in
sequence and grouped according to the groups in the envelopes.

All patients received a standardized long GnRH agonist protocol, oocyte retrieval, fertilization, and planned embryo transfer. In
brief, in the mid-luteal phase of the previous menstrual cycle, 0.1 mg of triptorelin acetate (triptorelin) was used for downregulation
for 14-16 days. On the 2nd to 5th days of the menstrual cycle, the serum hormone levels (FSH, LH, and E2) and ultrasonography
results were monitored. Gonadotropin (Gn) was used after the downregulation standard was reached (FSH <5 mlU/mL, LH < 5
mlU/mL, E2 < 50 pg/mL). Gonadotropin (Gn) was given at 75-300 IU. The Gn dose was adjusted according to the growth of the follicle
and the hormone levels. When more than one follicle with a diameter greater than 18 mm appeared, intramuscular injection of human
chorionic gonadotropin (hCG) 6000-10000 IU was given. Oocyte retrieval was performed 36 h later.

The obtained oocytes were inseminated approximately 4-6 h by a conventional method or intracytoplasmic sperm injection ac-
cording to the sperm quality, and a fertilization check was then performed 16 to 18 h after insemination. The embryos were scored
according to the morphological criteria.®* The quality of the blastocysts was assessed according to the criteria of Gardner and
Schoolcraft.®® High-quality embryos on day 3 or blastocysts on days 5-6 were selected for fresh transfer or cryopreserved via vitri-
fication and frozen-embryo transfer. Transfer on day 3 or days 5-6 depends on the quality of the embryo and the patient’s wishes.
When more embryos were high quality on day 3 and the probability of achieving high-quality blastocysts at days 5-6 was high, the
patients were persuaded to choose continuous cultures to obtain 5-6 blastocysts for embryo transfer. Otherwise, the patients were
suggested to choose embryo transfer immediately without attempting further culture to obtain blastocysts. Luteal-phase support
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was administered before embryo transfer and continued until 10 weeks of gestation. Biochemical pregnancy was defined as a human
chorionic gonadotropin level of more than 10 mIU per milliliter, as measured at 10 days after embryo transfer. Clinical pregnancy was
defined as the presence of a gestational sac in the uterine cavity at 30 days after embryo transfer, as detected by ultrasonography.
Live birth was defined as the delivery of a live-born infant around the due date of pregnancy.®*

Clinical interventions

The dosage and duration of rapamycin were determined according to previous articles and registered clinical trials.>’**? For patients
in the rapamycin group, oral rapamycin (sirolimus, Rapamune; Pfizer) at a daily dose of 1 mg was administered for 21-28 days begin-
ning on the day of endogenous hormone downregulation until oocyte retrieval, which was defined as short-term use.

Clinical outcomes
The primary outcomes were oocyte number and embryo number. The secondary outcome was the rate of clinical pregnancy.

Ovarian stimulation

All donors underwent controlled ovarian stimulation. An ultrasound scan and serum estradiol assays were performed to monitor
follicular size, which ensured that the cumulus—oocyte complexes obtained from comparable follicles of the same developmental
stage. When two or more follicles were at least 12 mm in diameter, 10,000 IU human chorionic gonadotropin (hCG) was administered
36 h before oocyte retrieval.

Oocyte retrieval and isolation of cumulus cells

The cumulus-oocyte complex (COC) was isolated via ultrasound-guided vaginal puncture and classified according to the oocyte
nuclear maturation stage: GV (germinal vesicle), Ml (metaphase 1) and MIl (metaphase Il). We collected only GV-stage oocytes
and surrounding CCs for this study, whereas MIl-stage oocytes were used for clinical fertilization.

The CCs were collected as previously described.®® Briefly, CCs were mechanically stripped from oocytes under stereomicro-
scopy, and then, the isolated CCs were dispersed into single cells with 0.03% hyaluronidase (H6254-500MG, Sigma-Aldrich) and
resuspended three times in PBS. The separated CCs were counted as up to 500 cells and placed in the lysate. Tyrode’s acidic so-
lution (T1788-100ML, Sigma-Aldrich) was used to facilitate stripping of the zona pellucida to produce naked oocytes. Oocytes were
observed under a microscope to ensure the absence of contamination with CCs. Naked oocytes were carefully washed three times
with PBS containing 0.1% polyvinylpyrrolidone (PVP, P0930-50G, Sigma-Aldrich) to prevent them from adhering to tools or dishes
and then placed in lysis buffer.

Human cumulus cells and culture

Human cumulus cells were dissected from the GV-stage cumulus—oocyte complex (COC) and purified from Amcare Women'’s & Chil-
dren’s Hospital. Briefly, cumulus cells were mechanically stripped from oocytes under stereomicroscopy and then dispersed
into single cells with 0.03% hyaluronidase. Next, the cells were suspended in 1 mL of medium containing DMEM/F12
supplemented with 10% FBS and 1% penicillin-streptomycin and centrifuged again. Next, the supernatant was decanted,
and the cell pellet was resuspended in fresh medium and plated. The cells were cultured for three days at 37°C in a 5% CO,
incubator. Young and old CC samples were taken from the same day and cultured for the same number of days in each batch of
experiments.

METHOD DETAILS

In vitro maturation of mouse oocytes

At 2 and 10 months of age, female mice were humanely sacrificed after PMSG injection at 44-46 h intervals. After the ovaries
were dissected, fully grown germinal vesicle (GV) oocytes were collected under a microscope by pricking the follicles in IVM
medium (a-MEM with 5% fetal bovine serum (FBS), 0.24 mM sodium pyruvate, 1 IU/mL PMSG, and 1.5 IU/mL hCG) via an
insulin syringe. The obtained GV oocytes were divided into two equal parts and then placed in IVM medium (with or without
rapamycin). Oocytes were matured in IVM medium for 17-18 h at 37°C. MIl oocytes were determined by extrusion of the first polar
body.

ROS assay

2',7'-Dichlorodihydrofluorescein diacetate (H2DCFDA, HY-D0940, MCE) was utilized to estimate the ROS levels via a previously
described method.®® Briefly, denuded mouse oocytes were incubated in HEPES-buffered KSOM (HKSOM) medium containing
5 pM H2DCFDA in the dark for 30 min at 37°C and then washed three times in HKSOM medium prior to being mounted on a glass
slide and imaged with a fluorescence microscope. Mouse cumulus cells were incubated with 5 uM H2DCFDA solution in PBS in the
dark for 30 min at 37°C, washed three times with PBS, and fluorescence was detected and imaged with an Axio-Imager Z2 fluores-
cence microscope (Carl Zeiss).
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Immunofluorescence microscopy of mouse samples

In accordance with a previous method,®” the spindles and chromatin of mouse oocytes were stained and observed via immunoflu-
orescence microscopy. Mouse oocytes were fixed in fixative (MTSB XF) at 37°C for at least 30 min and then washed four times with
washing buffer (phosphate-buffered saline supplemented with 0.02% NaN3, 0.01% Triton X-100, 0.2% nonfat dry milk, 2% goat
serum, 2% bovine serum albumin and 0.1 M glycine). Afterward, the oocytes were left in washing buffer for 2 h at 37°C for blocking.
Oocytes were incubated with FITC-a-tubulin (1:100, F2168, Sigma) overnight at 4°C. Next, the samples were washed and stained
with DAPI to label the DNA.

For the expression of p-S6 and S6, fixed oocytes were left in washing buffer for 2 h at 37°C for blocking and then incubated with p-
S6 (1:100, 4858S, Cell Signaling Technology) and S6 (1:100, 2217S, Cell Signaling Technology) antibodies overnight at 4°C. Oocytes
were washed and incubated with secondary donkey anti-rabbit IgG Alexa Fluor 594 antibody (1:200, A-21207, Thermo Scientific) at
37°C for 2 h and stained with DAPI to label DNA. Oocytes were mounted on glass slides, sealed with nail polish, and imaged with an
Axio-lmager Z2 fluorescence microscope (Carl Zeiss). Imaged was used for relative fluorescence quantification.

Immunofluorescence microscopy of human samples

The cells were washed twice with PBS, fixed with fresh 3.7% paraformaldehyde for 30 min at 4°C, permeabilized with 0.1% Triton
X-100 in blocking buffer (3% goat serum plus 0.1% BSA in PBS) for 20 min at room temperature (RT), incubated with blocking buffer
for 1 hat RT, and stained with primary antibodies overnight at 4°C. The cells were subsequently incubated with fluorescence-labeled
secondary antibodies for 2 h at RT. Hoechst 33342 (Thermo Scientific, H3570) was used to stain the nuclear DNA. The antibodies
used in this experiment were as follows: H3K9me3 (1:200, ab8898, Abcam), H3K27me3 (1:200, 07-449, Millipore), LINE-1 ORF1p
(1:100, MABC1152, Millipore), 53BP1 (1:300, ab36823, Abcam), donkey anti-rabbit IgG Alexa Fluor 594 (1:200, Thermo Scientific,
A-21207), and donkey anti-mouse IgG Alexa Fluor 488 (1:200, Thermo Scientific, A-21202). The fluorescence was detected and
imaged via an Axio-Imager Z2 fluorescence microscope (Carl Zeiss). The integrated fluorescence intensity was estimated via ImageJ
software.

For LysoTracker red staining, the cells were seeded on glass bottom cell culture dishes (NEST, 801002, TC-treated). To stain the
cells, 75 nM LysoTracker red (Beyotime, C1046) was added to the CC medium for 30 min at 37°C, and Hoechst 33342 was used to
label the nuclear DNA. The cells were then washed once with CC medium, which was replaced with fresh CC medium, followed by
confocal imaging. The lysosome inhibitor bafilomycin A (700 nM, Selleck, S1413) was added to CC medium for 6 h as a control.®®

Proteostat staining was performed according to the instruction manual of the PROTEOSTAT Aggresome detection kit (Enzo Life
Sciences; ENZ-51035-K25). Briefly, the cells were washed twice with PBS, fixed with 4% formaldehyde for 30 min at room temper-
ature, treated with permeabilization solution (0.5% Triton X-100, 3 mM EDTA, pH 8.0) on ice, gently shaken for 30 min, washed twice
with PBS, and stained with a 1:500 Proteostat in 1x Assay buffer for 2 h at room temperature and with Hoechst 33342 for nuclei.
Afterward, the samples were washed twice with PBS and placed under coverslips on slides. The stained cells were imaged via
confocal microscopy with a standard rhodamine filter set for cell aggresome signaling and a DAPI filter set for imaging the nuclear
signal. The cells were treated with the proteasome inhibitor MG132 (10 pM, MCE, HY-13259) for 12 h as a control.®°

For the LysoTracker and Proteostat staining experiments, we completed a total of five batches of independent experiments, and
the same settings of confocal microscopy were applied to each batch of all experimental conditions. For the quantification of the
LysoTracker* and Proteostat* areas per cell via Imaged, the images were converted to black and white, and thresholds were set
to outline the positive areas. The same threshold values were used for all images across all conditions in each batch of independent
experiments.

For the proteostat staining of oocytes, refer to a previously published article.°® Human GV oocytes were fixed with 4% formalde-
hyde for 1 h at room temperature and then washed and permeabilized with shaking on ice for 1 h. After brief washing, the oocytes
were incubated with 1x assay buffer containing 0.1% BSA and a 1:500 Proteostat at room temperature. The oocytes were washed
three times with 1 xAssay Buffer containing 0.1% BSA, after which the fluorescence was imaged. Three batches of independent ex-
periments were conducted.

Protein synthesis assay

Protein synthesis was performed according to the instructions of the BeyoClick HPG-594 Protein Synthesis Assay Kit (P1209S, Be-
yotime). Briefly, cumulus cells were incubated in 1x HPG working solution with methionine-free and serum-free culture medium for
30 min at 37°C, fixed at room temperature for 15 min, and permeabilized at room temperature for 15 min. Click reaction solution was
prepared according to the instructions and incubated at room temperature in the dark for 30 min. Nuclear DNA was stained with
Hoechst 33342 solution, and then fluorescence was imaged. Human cumulus cells were treated with rapamycin (0.50 pM) or CHX
(0.30 pM) for three days.

AZT treatment

To inhibit L1 reverse transcriptase in cumulus cells, the collected cumulus cells were seeded into plates and then treated with 60 uM
AZT (azidothymidine, Sigma-Aldrich, A2169) for 4 days. The administration and doses of AZT used in this study were based on
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previous reports.’® Moreover, we set up a series of concentration gradients and used immunofluorescence to further determine the
appropriate concentration for detecting significantly reduced L1-ORF1 expression. After AZT treatment, cumulus cells were fixed
and subjected to immunofluorescence and gRT-PCR.

Rapamycin and chaetocin treatment

The administration and doses of rapamycin were described in a previous article.’’ Rapamycin at 0.50 pM was added during IVM of
the oocytes, and then, immunofluorescence and ROS detection were performed. Cumulus cells were seeded into plates and then
treated with rapamycin (0.25 pM and 0.5 uM) for three days. Treating CCs with chaetocin (50 nM) for 24 h inhibited H3K9me3.*°

Western blot

The cells were washed twice in PBS, lysed in cell lysis buffer on ice for 30 min and then sonicated for 1 min at an amplitude of 60 at2 s
intervals. After centrifugation at 10,000 x g for 10 min at 4°C, the supernatant was transferred into new tubes. The protein concen-
tration of each sample was measured via bicinchoninic acid, and the protein samples were boiled in SDS sample buffer at 100°C for
10 min. The protein of each cell extract was resolved via 10% Acr-Bis SDS-PAGE and transferred to polyvinylidene difluoride (PVDF)
membranes (Millipore). The membrane was blocked with 5% skim milk in TBST at room temperature for 2 h and then incubated with
primary antibodies overnight at 4°C. p-actin served as a loading control. The immunoreactive bands were then probed for 2 h at RT
with the appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies. The protein bands were detected with a
chemiluminescent HRP substrate (WBKLS0500, Millipore). The antibodies used for western blotting were as follows: p-mTOR
(5536T, Cell Signaling Technology), mTOR (2983S, Cell Signaling Technology), p-S6 (4858S, Cell Signaling Technology), S6
(22178, Cell Signaling Technology), p-4E-BP1 (9451T, Cell Signaling Technology), 4E-BP1 (9644T, Cell Signaling Technology),
LC3 (14600-1-AP, Proteintech) and p-actin (AC026, ABclonal).

SA-f-gal staining

The senescence assay of cumulus cells was performed with a senescence-associated p-galactosidase staining kit (Beyotime, China,
C0602) according to the manufacturer’s instructions and a previous method.®? Briefly, cumulus cells were washed three times with
PBS and then fixed with 4% paraformaldehyde for 15 min at room temperature. After being washed three times with PBS, the cells
were incubated overnight at 37°C in darkness with working solution containing 5-bromo-4-chloro-3-indolyl p-D-galactopyranoside
(X-gal).

qRT-PCR

Detection of 18S and 28S abundance was conducted according to a previously published method.*® Total RNA was extracted from
cumulus cells via an RNeasy RNA Micro Kit (74034, QIAGEN) according to the manufacturer’s instructions. Reverse transcription was
performed on purified total RNA to generate cDNA via M-MLYV reverse transcriptase (Invitrogen) and random hexamer primers (18S
and 28S rRNAs) or Oligo (dT)18 primers according to the manufacturer’s instructions. gPCR was performed with FastStart Universal
SYBR Green Master Mix (4913914001, Roche) on an iCycler MyiQ2 detection system (Bio-Rad). Each sample was set up in duplicate
and normalized to GAPDH. gPCR data were analyzed via the AACt method. gPCR primers (Table S7) were confirmed for their spec-
ificity via dissociation curves, and primer design for L1 was performed via a previously published method.°

RNA-seq library construction and sequencing

The isolation of gDNA and mRNA from individual cells was performed as previously described,’® and separated mRNAs and gDNA
were used for transcriptome analysis and other experiments (such as telomere length measurement), respectively. The RNA-seq
library was constructed according to the Smart-seq2 protocol.?® Briefly, single oocyte or CC samples were quickly placed in lysis
buffer, and then reverse transcription, template switching and preamplification were performed to obtain cDNA. Next, RNA-Seq
libraries were constructed with a TruePrep DNA Library Prep Kit V2 for lllumina (TD503-02, Vazyme Biotech) according to the instruc-
tion manual. The quality of the cDNA library was checked via qPCR analysis of the housekeeping gene GAPDH. For the accuracy and
repeatability of the RNA-seq data, we performed a duplicate when we constructed a library for every single oocyte, and two samples
of CCs (from the same donor as the oocytes) were collected for RNA-seq library construction. The final indexed libraries were pooled
and sequenced on an lllumina HiSeq X10 platform with a 150-bp paired-end read length.

MethylC-seq library construction and sequencing
DNA methylation libraries of oocyte and CC samples were constructed according to a previously reported method with minor mod-
ifications.’ For oocytes, 10 oocytes from 3 to 5 donors of similar age were collected in one tube as a sample. For cumulus cells, we
collected CC samples from 6 donors of different ages and then performed DNA extraction in strict accordance with the instructions of
the QlAamp DNA Micro Kit (56304, Qiagen). Detailed sample information, including age and sample size, is listed in Table S1.
Bisulfite conversion was performed on cell lysates with the following steps: incubation at 98°C for 10 min and 64°C for 120 min.
DNA was eluted in 10 mM Tris-Cl (pH 8.5) and combined with 10 mM dNTPs, 5 uM BioPEA_N4_37 (5'-biotin-ACACTCTTTCCCTA
CACGACGCTCTTCCGATCTNNN N-3'), and 10x NEBuffer 2 (E7645S, NEB, Ipswich, England) before incubation at 95°C for
5 min, followed by a 4°C pause for 2 min. Then, 75 U of Klenow Fragment (M0212M, NEB) was added, and the samples were
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incubated at 4°C for 5 min, +1°C/15 s to 37°C, and 37°C for 30 min. Samples were incubated at 95°C for 1 min and transferred imme-
diately to ice prior to the addition of fresh 1 mM dNTPs, 10 nM BioPEA_N4_37, 10x NEBuffer 2, and 75 U Klenow Fragment in a total
volume of 2.75 pL. The samples were incubated at 4°C for 5 min and then at +1°C/15 s to 37°C for 30 min. This random priming and
extension were repeated a further three times (five rounds in total). The samples were then incubated with 40 U of exonuclease |
(M0293V, NEB) for 1 h at 37°C before the DNA was purified via 1x Agencourt Ampure XP beads (A63881, Beckman) according to
the manufacturer’s guidelines. The samples were eluted in 10 mM Tris-Cl (pH 8.5) and incubated with washed M-280 streptavidin
Dynabeads (65001, Life Technologies) for 30 min with rotation at room temperature. The beads were washed twice with 0.1 N
NaOH and twice with 10 mM Tris-Cl (pH 8.5), and resuspended in 48 pL reaction mixture: 10 mM dNTPs, 10x NEBuffer 2, and
10 pM Primer 2.0 (5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNN-3’). The samples were incubated at 95°C for 45 s
and then transferred immediately to ice before the addition of 100 U of Klenow fragment and incubated at 4°C for 5 min, +1°C/
15 s to 37°C, and 37°C for 90 min. Washed beads with 10 mM Tris-ClI (pH 8.5) and resuspended in 50 pL reaction mixture: 1 U of
KAPA HiFi HotStart DNA Polymerase (KK2801, KAPA Biosystems), 10 uM Primer 1.0 (5'-AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT-3’), and 10 pM Index. Libraries were then amplified via PCR as follows: 98°C for
45 s; eight repeats of (98°C for 15 s; 65°C for 30 s; 72°C for 30 s); 72°C for 1 min; and a hold at 4°C. Amplified libraries were purified
via 0.8 x Agencourt Ampure XP beads. The samples were eluted in another 27 pL reaction mixture: 1 U KAPA HiFi HotStart DNA
Polymerase, 10 uM Primer 1.0 forward primer, and 10 uM Index, and amplified by PCR for an additional eight repeats. Amplified li-
braries were assessed for quality and quantity via high-sensitivity DNA chips on an Agilent Bioanalyzer. The DNA methylation libraries
were sequenced by Annoroad via a HiSeq X10 platform with a 150-bp paired-end read length.

CUT&Tag

As described previously,”® female CC samples were harvested and centrifuged for 3 min at 600 x g at RT. The cells were washed with
1 mL of wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM spermidine, and 1 x protease inhibitor cocktail) by gentle pipetting
and centrifuged for 3 min at 600 x g at RT. Concanavalin A-coated magnetic beads (Bangs Laboratories, BP531) were washed three
times with binding buffer (20 mM HEPES pH 7.5, 10 mM KCI, 1 mM MnCl, and 1 mM CaCl,) and then resuspended in the original
volume of binding buffer. Ten microliters of activated beads were added per sample, incubated at RT for 10 min and collected
with a magnet stand. The bead-bound cells and 2 pL of H3K9me3 antibody (Abcam, ab8898) were resuspended in 100 pL of antibody
buffer containing 2 mM EDTA and 0.1% BSA in 2 mL of Dig-wash buffer (0.05% digitonin in Wash buffer) and rotated at RT for 2 h. The
mixture was collected by a magnet stand, the supernatant was discarded, and the mixture was then incubated with a secondary
antibody (1:100) diluted in Dig-wash buffer at RT for 1 h. The mixture was washed three times with Dig-wash buffer by using a magnet
stand. The pG-Tn5 adaptor complex (~0.04 uM) was prepared in Dig-300 buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM sper-
midine, 1 x protease inhibitor cocktail and 0.05% digitonin) at a 1:100 dilution, and 100 pL was added to the cells with the liquid
removed and gently rotated at RT for 1 h. The mixture was collected by a magnet stand and washed three times in Dig-300 buffer.
Next, the cells were resuspended in 300 pL of tagmentation buffer (10 mM MgCl, in Dig-300 buffer), and the mixture was gently mixed
and incubated at 37°C for 1 h. To stop the reaction, 10 pL of 0.5 M EDTA, 3 pL of 10% SDS, and 2.5 pL of 20 mg/mL proteinase K were
added to the sample, and the mixture was incubated at 37°C overnight. The fragmented DNA in the mixture was extracted via a stan-
dard phenol-chloroform extraction procedure.

To amplify the libraries, 24 pL of DNA was mixed with 5 pL of ddH20, 10 pL of 5 x TAB (TD503-02, Vazyme Biotech), 1 uL of TAE
(TD503-02, Vazyme Biotech), and 5 pL each of uniquely barcoded P5 and P7 primers (TD204-207, Vazyme Biotech), and each sam-
ple contained a different barcode. The amplification reaction was performed with the following cycling conditions: 72°C for 3 min;
98°C for 30 s; 15 cycles of 98°C for 15 s, 60°C for 30 s, and 72°C for 3 min; a final extension at 72°C for 5 min; and a hold at 4°C.
Purified DNA libraries were tested for high quality prior to high-throughput sequencing. The libraries were sequenced on an lllumina
NovaSeq 6000 platform with a 150-bp paired-end read length by Novogene.

We collected two batches of CC samples, and in each batch of experiments, the young and older samples were collected on the
same day. However, owing to the limited number of samples, the number of cells in the two batches was not consistent (10,000 and
30,000 cells), but the number of cells in different age groups in the same batch was consistent (30 years versus 41 years & 31 years
versus 39 years).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing

The raw RNA-seq data with low-quality bases and adapters were trimmed via Trimmomatic to obtain clean reads.”® Next, the
trimmed clean reads were aligned to the UCSC human hg19 reference genome via HISAT2 with the default settings.”" featureCounts
was further used to calculate read counts for each annotated gene using the -M parameter.”” The gene expression level in a sample
was quantified as the transcripts per million (TPM), which was calculated according to the following formula: TPM; =

Cj / length of gene i

Z:C"f / length of gene i
detected in each cell, and cells with fewer than 10,000 genes or 1,000,000 mapped reads were filtered out. After the critical filtering
process, 48 sets of RNA-seq data from oocytes and 30 sets of RNA-seq data from CC samples were retained for downstream

x 108, where C;; was the count value of gene i in sample . For all sequenced cells, we counted the number of genes

Cell Reports Medicine 6, 102424, November 18, 2025 e7




¢? CelPress Cell Reports Medicine

OPEN ACCESS

analysis. To ensure the accuracy of the gene expression levels, only genes with TPM >1 in at least ten oocyte or CC samples were
analyzed. The total mapped reads and mapped ratios are shown (Figures S1C-S1E) and the median number of genes detected was
16,105 in each oocyte or 21,255 in CC samples.

Identification of aging-specific genes and functional analysis

The read counts were loaded into RStudio (v4.1.0), and the critical filtering process was performed to filter out genes with low expres-
sion. Aging-specific genes were defined via correlation analysis. Next, we computed Pearson’s correlations between donor age and
the expression levels of genes (TPM) via ‘cor’ in R language and identified aging-specific genes via Pearson’s coefficient (defined as
the age coefficient). For oocytes, aging-specific genes were defined as those with an age coefficient threshold of 0.4 (>0.4, upregu-
lated genes with age) or —0.4 (<—0.4, downregulated genes with age), after testing the significant differences of gene expression with
age using various age-correlation coefficient cutoffs, based on the principle described.?**° For the CC samples, aging-specific
genes were defined as those with an age coefficient threshold of 0.5 (>0.5, upregulated genes with age) or —0.5 (<—0.5, downregu-
lated genes with age), after testing various cut-offs as above.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of aging-specific genes were performed via
DAVID (v6.8),”® and only enriched pathways whose p value was <0.05 were considered significantly enriched. The interactions be-
tween translation- and ribosome-related GO enrichments and related genes were generated via Cytoscape (v3.9.1).”* GSEA was
conducted to identify enrichments associated with aging in oocytes and cumulus cells, and only gene sets with an FDR <0.05
were considered significantly enriched.”®

Transposable element analysis

For transposable element analysis, clean reads were aligned to the UCSC human hg19 reference genome by STAR with the param-
eters ‘-winAnchorMultimapNmax 100’ and ‘-outFilterMultimapNmax 100°.°° Referring to a previously published study,’” only the TEs
whose distributions in intergenic regions were mapped were considered, excluding the locations between the transcription start sites
and transcription end sites of genes. TEs annotated via the UCSC Genome Browser (RepeatMasker) were counted via feature-
Counts. The median mapped rates were 11.8% for the oocytes and 16.8% for the CC samples, and the median mapped reads
were 612,781 for the oocytes and 1,905,441 for the CC samples. TE expression was evaluated as counts per million (CPM). To ensure
the accuracy of TE expression, only TEs with CPM >1 in at least ten oocytes and CPM >2 in at least ten CC samples were analyzed.

Identification of aging-specific TEs

After critical filtering to remove TEs with low expression, aging-specific TEs were identified via correlation analysis. Specifically, Pear-
son’s correlations between donor age and the expression levels of TEs (CPMs) were computed via ‘cor’ in R language, and then,
aging-specific TEs were determined via Pearson’s coefficient (defined as the age coefficient) with a threshold of 0.4. Age coefficients
>0.4 were defined as TEs whose expression increased with age, whereas those < —0.4 were defined as TEs whose expression
decreased with age.

MethylC-seq data processing

Adaptors and low-quality bases of bisulfite sequencing reads were first trimmed by Trimmomatic (http://www.usadellab.org/cms/
index.php?page=trimmomatic) with default parameters. Next, reads that passed quality control were mapped to the human refer-
ence genome (hg19) via Bismark (version 0.19.1)’® in paired-end alignment mode. Only reads with a unique mapping location in
the genome were retained for further analysis. After alignment, the reads were further deduplicated via Picard (http://
broadinstitute.github.io/picard/). The bisulfite conversion rate was estimated by the spike-in of unmethylated lambda DNA. Methyl-
ation calls were extracted via the Bismark methylation extractor.

The annotations of exons, introns, CGls, TSSs and transcription end sites (TESs) were downloaded from the UCSC Genome
Browser (hg19). All repetitive element annotations were downloaded from RepeatMasker (hg19) via the UCSC Genome Browser.
Promoter regions were defined as the 1 kb upstream to 1 kb downstream of transcription start sites (TSSs).%®

The methylation levels of the CpGs were quantified according to previously published methods.®® For each CpG, the DNA methyl-
ation level was determined by the ratio of the number of reads supporting C (methylated) to the total number of reads (methylated and
unmethylated).

Metaplots of CpG methylation levels were generated by calculating the degree of methylation within each RefSeq gene and ten 1
kb windows of flanking sequences.

MethylC-seq data analysis

Initially, the human genome was divided into 1 kb tiles, and tiles with at least 3 CpGs covered by both age groups in a comparison
were considered the background to find DMRs. For tiles that passed the criteria, the methylation level of each retained tile was deter-
mined as the ratio of the number of alignments with C (methylated) to the sum of the alignments with C and T for all the CpGs in the tile.
When identifying DMRs in oocyte or CC samples of different age groups, we used the calculateDiffMeth function from the methylKit R
package with the following criteria: difference in methylation >20% and adjusted p value <0.05, which were adjusted via the SLIM
method'77,98,100
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Hierarchical clustering via Euclidean distance metrics derived from methylation levels per DMR for each age group was conducted
via the clusterSamples function from the methylKit R package with the ‘ward’ agglomeration method.

The distance of DMRs from the TSS was calculated on the basis of a previously published method.'®" Briefly, the distance was
reported by subtracting the mean DMR genomic localization from the TSS positions, grouping the distances into 500-bp clusters
from position —10 kb to position +10 kb, and quantifying the DMRs in each cluster. DMRs with a distance of more than 10 kb
from the respective TSS were excluded and not counted.

Enrichment analysis of genes with differentially methylated regions was performed via DAVID 6.8 (https://david.ncifcrf.gov). En-
riched pathways with a p value less than 0.05 were considered statistically significant. The differentially methylated regions used
for enrichment analysis contained only gene bodies, promoters and CGls, and regions located on intergenic and transposable ele-
ments were excluded.

Integrated analysis of DNA methylation and the transcriptome

To correlate the epigenetic and transcriptome datasets, DMRs were annotated to the nearest transcription start site via the annota-
tePeaks.pl function in HOMER (v4.11.1)."% Only DMRs located in the gene body, promoter, and CGl regions were used for associ-
ation analysis. DESeq2”® was used to obtain the statistical significance of the DEGs of different groups, and only the genes with a fold
change greater than 1.2 and adjusted p value <0.05 from the DEseq?2 results were considered to be differentially expressed. Adjusted
p values were computed in DESeqg2 via the Wald test and adjusted for multiple testing via the procedure of Benjamini and
Hochberg. '

CUT&Tag processing and analysis

The raw data were processed according to the following pipeline. The sequencing adapters were trimmed, and read pairs with low
quality or low complexity were filtered from the raw data through TrimGalore (v0.5.0). The trimmed read pairs were aligned to the
human reference genome hg19 via Bowtie2 (v2.3.4)"° with default parameters. For peak calling, the parameters used were macs?2
callpeak “-q 0.05 -g hs —-keep-dup all”.2%°® For annotation and enrichment analysis of the genomic regions, we referred to previously
published methods. % First, the “annotatePeak’” function in the R package ChIPseeker (v1.28.3)%" was utilized to profile the distri-
bution of genomic regions. Second, the functional enrichment of genes that are marked by or near H3K9me3 peaks was analyzed via
Genomic Regions Enrichment of Annotations Tool (GREAT) analysis with default settings via the R package rGREAT (v1.24.0)."%° We
used the ‘macs2 bdgdiff’ function to identify young-specific and old-specific H3K9me3 peaks. We utilized the ““intersect”” subcom-
mand in bedtools (v2.27.1) to identify peaks related to ribosome- and lysosome-related genes, including promoters and gene bodies,
and these ribosome- and lysosome-related genes were defined via RNA-seq data via correlation analysis. For data visualization,
bigwig files were generated via bamCoverage and merged via bigWigMerge, and H3K9me3 modification signals around peaks
were visualized via deepTools (v3.2.0).%? Promoters were defined as the regions 1 kb upstream and 1 kb downstream of TSSs.
Gene bodies were defined as the regions from the TSSs to the TESs.

Statistical analysis

Statistical analyses were performed via an unpaired two-tailed Student’s t test in PRISM software (GraphPad 8 Software) to compare
the differences between the treatment and control groups, assuming equal variance. The Mann-Whitney test was used to determine
the significance of differences between data without a normal distribution. One-way or two-way ANOVA with Tukey’s test was used
for multiple comparisons. The chi-square test was used to test differences between two groups for categorical variables. *, **, *** and
**** indicate p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively. NS indicates not significant. The bioinformatics data were
statistically analyzed via a two-tailed t test with R software, and p values are indicated in each figure. Correlations between clinical
indicators and age and the corresponding statistical significance were calculated on the basis of Pearson’s rank correlation coeffi-
cient (r).

For correlation analysis between the age and gene expression levels, p values were adjusted using the Benjamini-Hochberg (BH)
method. Selection criteria for age-correlation coefficient cut-offs included, (1) statistically significant correlations (BH-adjusted
p < 0.05), and (2) at least moderate correlation between age and gene expression levels (Jr| > 0.4).2%%°

For the clinical trials of rapamycin therapy, categorical data are presented as frequencies and percentages, and between-group
comparisons were conducted with the chi-square test. Continuous data are expressed as the means (+SD) or medians (Q1, Q3), with
a Wilcoxon rank-sum test for between-group differences. The detailed clinical information of the control group and the rapamycin
group is presented in Tables S5 and S6.

ADDITIONAL RESOURCES

The study has been registered on the Chinese Clinical Trial Registry (https://www.chictr.org.cn/) with registration number
(ChiCTR2300069828).
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