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Telomeres and associated proteins safe-
guard chromosome ends to preserve
genome stability.

Destabilization of telomeres leads to
fusion of telomeres and accumulation
of DNA damage.

Telomeres and retrotransposons exhibit
reciprocal regulation of each other.

Shortest telomeres can cause genome
instability by epigenetic activation of
retrotransposons.
Telomeres and their associated proteins protect the ends of chromosomes to
maintain genome stability. Telomeres undergo progressive shortening with
each cell division in mammalian somatic cells without telomerase, resulting in
genome instability. When telomeres reach a critically short length or are recog-
nized as a damage signal, cells enter a state of senescence, followed by cell
cycle arrest, programmed cell death, or immortalization. This review provides
an overview of recent advances in the intricate relationship between telomeres
and genome instability. Alongsidewell-establishedmechanisms such as chromo-
somal fusion and telomere fusion, we will delve into the perspective on genome
stability by examining the role of retrotransposons. Retrotransposons represent
an emerging pathway to regulate genome stability through their interactions
with telomeres.
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Telomeres and associated components
Linear chromosomes are grouped in pairs within the nucleus of mammalian cells. To maintain
genome stability, the natural ends of linear chromosomes need to be protected from exonucleolytic
degradation and fusion events. This protection is carried out by telomeres and associated proteins.
Telomeres are repetitive DNA sequences (TTAGGG in vertebrates) that span thousands of nucle-
otides as double-stranded DNA (dsDNA) and terminate as 130–210-nucleotide, G-rich, single-
stranded DNA (ssDNA) [1]. Telomere ssDNA has the ability to invade dsDNA and form distinct
telomere structures known as displacement loops (D-loops) and telomere loops (T-loops) [2].

In addition to DNA repeats, functional telomeres consist of multiple proteins. The shelterin com-
plex, comprising Trf1, Trf2, Pot1, Rap1, Tin2, and Tpp1, is responsible for safeguarding telomere
DNA [3]. Trf1 and Trf2 directly bind to telomere dsDNA [4–7], while Pot1 recognizes telomere
ssDNA and forms a heterodimer with Tpp1 [8–10]. Tin2 interacts with DNA-binding proteins
within the complex to stabilize the shelterin structure [11,12], while Rap1 is recruited to telomeres
by Trf2 [13]. Another crucial complex for telomere maintenance is the CST (CTC1, STN1, and
TEN1) complex [3]. The CST complex competes with Tpp1-Pot1 for binding to telomere
ssDNA, obstructing telomerase access to telomere G overhangs. This termination of telomere
extension leads to the recruitment of DNA polymerase α primase, which fills the C-strand
[14–16]. Various accessory factors are also present at telomeres. Rtel1 dissembles G-quadruplex
(G4) structures formed on telomere ssDNA, facilitating DNA replication and removing T-loops
to prevent overprocessing of telomeres by the SLX1/4 nuclease complex [17]. Telomeric
repeat-containing RNA (Terra), a long noncoding RNA (lncRNA) transcribed from telomeric
DNA, forms an R-loop with telomeric DNA and aids in the establishment of heterochroma-
tin at telomeres [18,19].

Telomere length varies across different species, but it is not directly correlated with the lifespan of
those species. For example, humans have an average lifespan of 73.2 years and are born with
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telomeres ranging from 8 to 15 kb, while mice are born with telomeres ranging from 50 to 60 kb
but have an average lifespan of about 2 years [20,21]. This difference in lifespan may be attributed
to variations in the rate of telomere shortening, as studies have found that the rate of telomere
shortening can predict the lifespan of a species [22]. In the absence of maintenancemechanisms,
telomeres naturally shorten with each cell division due to internal damage and replication issues
that prevent the synthesis of the lagging-strand sequence at the ends of chromosomes during
DNA replication [23,24]. When telomeres become too short, cells can enter replicative senes-
cence, a permanent cell cycle arrest, ensuring that short telomeres do not become shorter.
When telomeres become excessively damaged or critically short in proliferating cells, they
gradually lose their ability to protect chromosomes from end-to-end fusion, leading to genomic
instability. Most cells cannot survive such instability. However, if other genetic changes, such
as the silencing of tumor suppressor genes or the activation of oncogenes, occur along with
genomic instability, the telomere maintenance pathways can be reactivated [25].

Telomere shortening can be counteracted by the enzyme telomerase or through alternative
lengthening of telomeres (ALT). Telomerase is composed of several components, including the
reverse transcriptase Tert, the template lncRNA Terc, and accessory proteins such as Dkc1,
Nop10, Tcab1, Nhp2, and Gar1 [26]. Telomerase uses the RNA template to extend the telomeres.
In the absence of telomerase, telomeres can also be lengthened through ALT, which relies on
homologous recombination-based DNA synthesis at telomeres [27]. The majority of cancers rely
on telomerase to extend their telomeres, while approximately 10–15% of cancers use ALT as
a means of maintaining telomere length [28,29]. The elongation of telomeres allows cells carrying
mutations to continue proliferating and eventually become cancerous.

In view of the important roles of telomeres and associated components, revisiting telomere
function will provide further insights into the regulation of genome stability. This review aims to
summarize recent findings on the relationship between telomere length and genomic changes.

Role of telomere-associated proteins and RNAs in regulating telomere length
and chromosomal stability
Telomere-associated components are intricately involved in maintaining the integrity and func-
tionality of telomeres, as well as ensuring the stability of the chromosomes. Chromosomal fusion
and telomere fusion can occur during DNA replication as a result of various factors (Figure 1). The
unique structure and heterochromatin nature of telomeres, including G4 and T-loop structures,
can hinder the progress of replication forks [30,31]. When replication forks are stalled, they
may collapse, leading to the formation of DNA double-strand breaks (DSBs) [32]. There are
two primary pathways for repairing DSBs, homology-directed repair (HDR) and nonhomologous
end joining (NHEJ). Both NHEJ and HDR can repair DSBs at telomeres, with HDR being an error-
free repair mechanism, while NHEJ-mediated repair increases the risk of chromosomal fusion at
telomeres [33]. The fusion events caused by dysfunctional telomeres require the assistance of
DNA ligases. In the absence of DNA ligase IV (LigIV), the frequency of interchromosomal translo-
cations is greatly reduced [34], indicating the critical role of LigIV-dependent classical nonhomol-
ogous end joining (C-NHEJ) in driving interchromosomal telomere fusion. By contrast, alternative
nonhomologous end joining (A-NHEJ) is necessary for telomere fusion between intrachromosomal
sister chromatids. DNA ligase I (LigI) participates in both inter- and intrachromosomal telomere
fusion [35].

In the absence of factors that facilitate the replication of telomeric DNA, telomeres tend to shorten
and exhibit an increased propensity for chromatid fusion. For example, the loss of Rtel1 results in
telomere shortening and an elevation in genomic rearrangements [36]. Deletion of Rtel1 in
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Figure 1. Effect of the breakage–fusion–bridge cycle on genome stability and role of telomere fusion and
disruption of telomere proteins on genome instability. As a consequence, the genome becomes unstable, showing
translocation, deletion, duplication, and DNA damage.
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embryonic stem cells (ESCs) also increases sensitivity to DNA damage without impacting telo-
mere length [37]. Depletion of the G4-processing exonuclease Exo1 leads to telomere shortening
and chromosome fusion. Terra also plays a role in facilitating telomere DNA replication [38].
Deletion of Terra impairs telomere DNA replication and is associated with decreased telomere
length, increased telomere DNA damage, and events of telomere fusion [39,40].

The shelterin complex components Trf1 and Trf2 play crucial roles in regulating telomere length
and stability. Loss of Trf1 or Trf2 leads to distinct phenotypes in terms of telomere fusion and telo-
mere length. Trf2 deletion in ESCs does not impact telomere length, and knockout of Trf2 or Trf1
alone does not induce telomere fusion [41]. However, Trf22 depletion results in end-to-end chro-
mosome fusions in all other cell types [42,43]. The function of Trf1 is conserved in both ESCs and
somatic cells [44]. Loss of Trf1 induces telomere replication stress and telomere loss [44]. Dele-
tion of Trf1 specifically in germ cells also causes chromosome end-to-end fusion [45]. Conversely,
overexpression of Trf1 or Trf2 leads to progressive telomere shortening. Additionally, Trf2 overex-
pression, along with XPF nuclease-dependent telomere shortening, triggers increased chromo-
somal instability in mouse skin [46]. Overexpression of TRF1 also results in subtelomere
recombination in senescent cells [47].

The shelterin complex components Pot1a and Pot1b appear to have distinct functions in regulat-
ing telomere length and chromosomal stability. Depletion of Pot1a in mice elongates telomeres
and activates HDR-mediated chromosome fusions [48,49]. By contrast, loss of Pot1b or Tpp1
results in telomere shortening and chromosomal fusion [50]. The shelterin complex component
Tin2 is also implicated in telomere length regulation. Tin2 mutation causes severe short-
telomere syndromes [51,52]. Similarly, Tin2 depletion elicits unstable chromosomal ends and
chromosomal fusions [53]. As an accessory subunit of Trf2,Rap1 loss does not cause mean telo-
mere length shortening but does induce telomere fusion [54].

Chromosomal stability is also regulated by telomere proteins involved in DNA damages. For
instance, an important protein complex associated with telomeres, known as the CST complex,
plays a dual role in both preserving telomere length and managing DNA damage. The CST
complex promotes C-strand fill-in and maintains the length of 3′ polyG ssDNA [14–16]. Loss of
the key component of the CST complex CTC1 results in extension of telomere G-overhang
and telomeric DNA damage, while the loss of STN leads to progressive telomere shortening
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[55]. Apart from its role at telomeres, the CST complex is also involved in genome-wide replication
recovery. CTC1 mutation causes telomere loss, reduces CST interaction with RAD51, and
disrupts CTC1 binding to GC-rich genomic fragile sites, thereby increasing spontaneous
chromosome breakage and chromosome fragmentation under replication stress [56,57]. CST
dysfunction can also cause diverse forms of DNA damage [58], indirectly linking telomere length
maintenance to DNA damage. These findings highlight the important role of telomere-associated
components in regulating telomere length and genome stability.

Impact of telomere length on genome stability
Senescent or cancer cells containing critically short telomeres often exhibit telomere fusion. Intra-
sister chromosomal fusion is most commonly observed, while interchromosomal telomere fusion
and fusion of telomeres with nontelomeric DNA DSB sites are less frequent [34]. Telomere
loss and fusion have been linked to extensive genomic rearrangements [59–61] (Figure 1).
Upon chromosome fusion, dicentric chromosomes form, and the fused chromatids create a
bridge during anaphase, which breaks when the centromeres move toward opposite poles
[62]. Since the breakage sites often do not coincide with the fusion region, one daughter cell
carries a chromosome with terminal deletion, which allows another cycle of breakage–fusion–bridge
to occur [62]. The other daughter cell carries a chromosome with inverted duplication [62]. As
chromothripsis accumulates, DNA replication is accompanied by extensive DNA damage [63].
Consequently, gene amplification and chromosome translocations emerge during cell replication
[63]. As a result, cells accumulate subclonal heterogeneity, similar to that found in cancer cells [63].

Telomere length changes with defects in telomere DNA replication, the CST complex, or the
shelterin complex. However, the mean telomere length is not directly inversely correlated with
chromosomal fusion. Chromosomal fusion can still occur during telomeremaintenance/elongation,
such as in the case of Pot1a or Trf2 depletion. In instances of telomere shortening, chromosomal
fusion is associated with an increased incidence of critically short telomeres resulting from genetic
disruption of the shelterin complex. This is consistent with the finding that the shortest telomeres in
a cell are responsible for chromosomal instability [64]. Telomere fusions frequently occur in mice
lacking telomerase [65]. Our recent study also demonstrates that only cells with critically
short telomeres experience an increase in the number of chromosomal fusion events [66].
Cells with short telomeres can still maintain their chromosomal stability. Therefore, it is important
to determine whether the number of chromosomes with critically short telomeres increases, in
addition to the maintenance or elongation of average telomere length, especially in cases of
Pot1a or Trf2 depletion.

Long telomeres may also promote genome stability by exerting control over DNA damage.
Notably, mice with hyperlong telomeres accumulate less DNA damage in tissues during aging.
By contrast, critical short telomeres induce persistent DNA damage, as well as aging and
aging-associated diseases (Figure 1). Cells with critically short telomeres demonstrate a signifi-
cantly increased amount of DNA damage [66]. This finding is consistent with the observation
that DNA repair genes are downregulated only in cells with critically short telomeres but not in
wild-type cells or cells with short telomeres [66]. The increased genome-wide DNA damage
events are supported by the higher number of single nucleotide variants (SNVs), indels, and single
base substitutions (SBSs) in cells with critically short telomeres [66]. Dysfunctional DNA repair
ability adds to increased DNA damage and mutations. Another possible source of mutations
caused by critically short telomeres is replication stress, which is induced by oncogene overex-
pression [67]. Replication stress is a major cause of genome instability, as the collapse of
DNA replication forks results in the induction of DSBs [32]. Due to the deficiency of NHEJs
near telomeres, DSBs are vulnerable to mutations and rearrangements once they occur at
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subtelomeric regions [24]. The remaining question is how critically short telomeres suppress
the expression of DNA repair genes while activating oncogenes.

Retrotransposons and telomere length
Reciprocal regulation between retrotransposons and telomere length
Retrotransposons, crucial constituents of the genome, play integral roles in genome architecture,
stability, and transcriptional regulation [68–70]. Telomere length is initially associated with
retrotransposon activity in yeast [71]. Upon inactivation of telomerase, telomere length progres-
sively shortens, accompanied by Ty1 long terminal repeat (LTR)-retrotransposon activation
through the telomere checkpoint pathway in yeast [71]. Subsequently, the DNA damage check-
point is activated, leading to the arrest of yeast cells in G2/M phase [71]. However, those cells that
manage to escape cell cycle arrest develop alternative telomere structures, partially repressing
the transcriptional activation of Ty1 LTR retrotransposons [71]. The activation of the Ty1 LTR
retrotransposon can promote the stabilization of yeast telomeres. The reverse transcriptase of
Ty1 utilizes Ty1 cDNA intermediates as primers to reverse transcribe Y′ RNA into Ty1 cDNA,
which then recombines with subtelomeric Y′ elements to maintain telomeres in surviving yeast
cells with critically short telomeres [72]. A similar phenomenon is observed in the Drosophila ge-
nome. The Drosophila genome lacks a gene encoding telomerase and canonical telomere re-
peats. Drosophila does not rely on conserved short DNA repeats as telomeres for end
protection and instead have domesticated retrotransposons, which are inserted specifically at
chromosome ends to protect chromosomes from erosion [73]. In Bombyx mori (silkworm), telo-
meres comprise canonical telomere repeats and retrotransposons. These findings suggest recip-
rocal regulation between retrotransposons and telomere length.

An analogous regulatory strategy has also been observed in mammalian cells. Loss of telomerase
in a variety of mouse cells and tissues leads to shortened telomeres and concurrent activation of
retrotransposons [66]. Upon passaging, telomeres become critically short, which is associated
with extensive activation of retrotransposons, including LINE1s, IAPs, and MERVL [66]. These
activated retrotransposons are enriched at subtelomeric regions [66]. The activation of retro-
transposons can be attributed to the decrease in the heterochromatin mark H3K9me3 and
increased chromatin accessibility [66], since retrotransposons are known to be silenced by
H3K9me3-marked heterochromatin in both human and mouse cells [68,69,74].

Aging cells with shorter telomeres demonstrate reduced H3K9me3 levels (Figure 2) [75]. Consis-
tently, premature aged cells from Werner syndrome patients also display shorter telomeres and
reduced H3K9me3 levels [76]. Similarly, Hutchinson–Gilford progeria syndrome (HGPS) cells
demonstrated accelerated telomere erosion and a reduction in H3K9me3 [77]. As telomeres
shorten and H3K9me3 decreases, retrotransposons such as LINE1 and HERVK become
activated in both aging cells and premature aged cells (Figure 2) [78–81]. Proteins involved
in establishing H3K9me3 and maintaining telomeres also contribute to the suppression of
retrotransposons (Figure 2). For instance, the Daxx and Atrx complex safeguards the genome
by silencing repetitive elements, including telomeres and retrotransposons, through Suv39h
recruitment and H3K9me3 [82]. Hdac5, which facilitates H3K9me3 deposition and telomere
maintenance, also has the ability to repress retrotransposons [83]. Several other proteins indi-
rectly participate in regulating telomere length and H3K9me3 deposition on retrotransposons,
such as CLOCK, SIRT7, and DGCR8. Interestingly, CLOCK, SIRT7, and DGCR8 are downregu-
lated in senescent cells, which often have shorter telomeres [79–81]. CLOCK regulates telomeres
by controlling the expression of Tert mRNA while simultaneously repressing LINE1 through
H3K9me3 [81,84]. SIRT7 promotes the expression of TR4, which is involved in the ALT process
[85,86]. SIRT7 represses LINE1 and counteracts cellular aging [80,87]. DGCR8 controls the
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Figure 2. Regulation of telomere length and retrotransposons by H3K9me3-marked heterochromatin in young
and senescent cells. In young cells, retrotransposons are repressed by H3K9me3-marked heterochromatin. In senescent
cells, retrotransposons are activated upon reduced expression of Sirt7, DGCR8, and CLOCK. It remains to be determined
whether Sirt7, DGCR8, and CLOCK contribute to telomere maintenance and telomeric heterochromatin in senescent and
young cells. Broken arrow represents uncertain regulation.
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stability of human telomerase RNA and is essential for maintaining H3K9me3-marked hetero-
chromatin, including LINE1 loci [79,88]. Considering that telomeres are also part of H3K9me3-
marked heterochromatin, it would be intriguing to investigate whether CLOCK, SIRT7, or
DGCR8 directly regulate telomere length and stability in young and senescent cells. These find-
ings highlight the intricate interconnection between telomeres, H3K9me3, and the restriction of
retrotransposons.

As an important part of heterochromatin, telomere length not only affects the number of telomeric
H3 histones but also regulates telomeric H3K9me3 frequency [89]. Short telomeres tend to have
a lower H3K9me3 density per H3 compared with longer telomeres [89]. This may further contrib-
ute to chromatin openness at telomeric regions and affect retrotransposon expression at
subtelomere regions through telomere position effects. In this mechanism, subtelomeric genes
are repressed by telomeric heterochromatin, while telomere shortening leads to the activation
of subtelomeric genes [90]. Additionally, distant retrotransposons may also be influenced by
telomeres through long-distance looping, which becomes more pronounced in the absence of
functional telomeres [66]. Reintroduction of telomerase represses activated retrotransposons,
highlighting the critical role of telomere length in restricting retrotransposon expression in mammals
[66]. ESCs with critically short telomeres exhibit increased chromatin interactions at subtelomeric
regions, which is associated with enhanced transcription [66]. The activation of MERVL in
ESCs with critically short telomeres can be explained by the upregulation of genes located at
subtelomeres, such as Zscan4, which is known to promote MERVL expression [91].

In certain instances, retrotransposon activation may facilitate telomere elongation (Figure 3).
In early mouse blastocysts, the expression activation of the non-LTR retrotransposon LINE1
coincides with telomere extension [92]. In agreement, a decrease in relative telomere length
and LINE1 repression by methylation has been observed in patients with autism [93]. However,
unlike yeast and silkworm, retrotransposons in mammals do not directly elongate telomeres
through insertion. Instead, LINE1 activates the expression of cMyc and Klf4, which in turn trigger
Tert transcription [94]. Inhibition of LINE1 reverse transcriptase with azidothymidine (AZT)
impedes telomere elongation and the expression of two-cell genes in mouse early embryos
[95]. AZT also inhibits telomere elongation and increases LINE1 copy number in early mouse
180 Trends in Genetics, February 2024, Vol. 40, No. 2
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Figure 3. Inter-regulation
between telomere length and
retrotransposons in mammalian
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subtelomeric LINE1, which promotes
the expression of Klf4 and cMyc,
subsequently activating the expression
of Tert, which is responsible for
extending telomere length. Abbreviation:
UTR, untranslated region.
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embryos [96]. It is worth noting that telomerase in nature is a reverse transcriptase, and AZT has
been used as a telomerase inhibitor [97]. Thus, using AZT as a LINE1 reverse transcriptase inhib-
itor may inhibit telomerase. The development of more specific inhibitors targeting LINE1 reverse
transcriptase will allow for a specific investigation of the role of LINE1 in telomere length regulation.

Impact of retrotransposons on genome stability
Both telomeres and retrotransposons are repetitive elements that are hotspots for recombination
and represent a serious challenge for genome integrity. Maintaining these repeated elements in a
compact heterochromatic structure suppresses recombination and unwanted mutagenic trans-
position and is therefore indispensable for genomic stability [98]. Activation of retrotransposons
due to critically short telomeres can induce genome instability in mammals through various routes
(Figure 4).

Evolutionarily young members of the ERVK family, endogenous retroviruses, display strong
retrotransposition potential [99]. In laboratory mice, approximately 10% of germline mutations
are caused by IAPs and ETn; both of which belong to the ERVK family [100]. Additionally, IAPs,
MMETn, and MTA can retrotranspose to other genomic locations when activated in response
to telomere shortening [66]. Somatic insertions of IAPs or MMETn have been linked to changes
in splicing sites and gene expression [101]. However, HERVK lacks the ability to retrotranspose,
despite detectable HERVK insertional polymorphisms within the human population [102]. These
findings imply that HERVs may contribute to homologous recombination, which can result in
Trends in Genetics, February 2024, Vol. 40, No. 2 181
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Figure 4. Activation of retrotransposons upon telomere shortening destabilizes the host genome by insertion
into various genomic loci. Telomere shortening leads to chromatin openness and subsequent activation of
retrotransposons such as LINE1. Retrotransposons such as LINE1 may serve as an alternative promoter (intron insertion),
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result of retrotransposon activation, point mutations/SNPs, deletion, insertion/translocation, recombination, inversion, and
duplication may occur.
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chromosomal rearrangements. In addition, HERVK may affect genome stability indirectly by
assembling into virus-like particles and spreading to other cells while inducing cellular senescence
[78]. The HERVK encoded env protein can promote cellular proliferation and oncogenesis by
interacting with various oncoproteins [103]. HERVW derived proteins can mediate cell fusion,
thereby eventually causing polyploidy or aneuploidy [104]. The aforementioned findings highlight
an important role of ERVs in regulating genome stability.

When LINE1 is activated upon telomere shortening, it may express the nucleic acid chaperone
ORF1, along with ORF2P, which possesses endonuclease and reverse transcriptase activities.
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Image of &INS id=
CellPress logo


Trends in Genetics

Outstanding questions
It remains to be explored whether
the shortest telomeres regulate
retrotransposons to influence genome
stability in human senescent cells and
cancer cells.

Human cells generally have shorter
telomeres than mouse cells. It will be
interesting to check whether human
cells are more sensitive to telomere
attrition-induced retrotransposon acti-
vation and genomic instability.

Different retrotransposons can respond
differently to various telomere lengths,
and the underlying mechanism remains
to be determined.

Do the shortest telomeres derepress
retrotransposons through DNA dam-
age signals, in addition to heterochro-
matic regulation?

The shortest or dysfunctional telomeres
have been known to induce DNA dam-
age signaling at the telomere. It is un-
clear how the shortest telomeres also
impair the DNA repair pathways found
in the study [66].

Retrotransposon activation is
accompanied by compromised DNA
damage repair pathways and activated
cancer-related pathways following
telomere attrition. It remains to
be understood whether and how
retrotransposons influence the DNA
damage repair and cancer pathways.

Further experiments are needed
to understand how telomere length
regulates 3D chromatin structure,
chromatic accessibility, epigenetics,
and transcription and their association
with genome stability.

It will be interesting to identify the
factors that govern the length and
rate of telomere shortening in various
species.

The mechanism by which the epigenetic
state of telomeres is intricately linked to
the maintenance of genome stability
remains to be discovered.

Telomeric variant sequences exist
within telomeres. Their roles in regulating
telomere structure and ensuring
genome stability are still to be unveiled.
LINE1, SVA, and SINE elements exhibit retrotransposition capabilities both in embryonic stem
cells with critically short telomeres and in somatic cells [66,105–107]. LINE1 elements harboring
disabled endonucleases can exploit dysfunctional telomeres as integration sites [108]. When
retrotransposons insert themselves near genes, they have the potential to disrupt gene expres-
sion, including the induction of oncogene expression, such as Ostf1 and Ret [66]. If the insertion
occurs within the coding region of a gene, it can cause frameshift mutations and premature
termination, resulting in the loss of gene function. Retrotransposon insertions within introns
can induce alternative splicing of genes [109,110]. Retrotransposons can also contribute to
structural variations [111] and impact neighboring chromatin environments by attracting epigenetic
modifiers [112].

In addition to retrotransposition-induced genome instability, LINE1 can induce genome instability
by encoding endonucleases. During LINE1 insertion, the LINE1 endonuclease can recognize
genomic DNA and generate DSBs [113]. Consequently, cells overexpressing LINE1 exhibit in-
creased DNA damage andG2/M cell cycle arrest [113]. Additionally, DSBs near retrotransposons
may facilitate invasion of the 3′ end of the broken DNA strand into the template strand of a non-
allelic homologous retrotransposon [114]. This leads to the joining of the synthesized strand car-
rying retrotransposons with the other strand via NHEJ, resulting in the insertion of part of the
retrotransposon at the DSB site [114]. Another mechanism by which retrotransposons can
induce genome instability is through TE-mediated nonallelic homologous recombination
(NAHR). Retrotransposons, such as Alu, can provide nonallelic homology to the invading
strand for annealing [115]. As a result of NAHR, genomic deletion, duplication, or inversion
can occur [116]. These studies also explain the observed mutations and genomic rearrange-
ments at nonsubtelomeric regions in cells with critically short telomeres [66].

Mice have long telomeres, such that several generations of telomere shorteningwithout telomerase
are able to reach the shortest telomeres [64]. The shortest telomeres, not the average telomere
length, lead to cell senescence [64]. Human telomeres are shorter than mouse telomeres
[20,21]. The fact that the shortest telomeres in the mouse ESC model cause genetic instability
via retrotransposons could also occur in humans, but further experiments are needed to validate
this notion.

Concluding remarks
Our understanding of the role of telomeres in regulating genome stability has significantly
advanced in recent years due to the development of genomic technologies. These studies
have unveiled new routes through which telomeres regulate genome stability. Retrotransposons
have emerged as crucial partners of telomeres in maintaining genome stability. Telomeres and
transposons share the characteristic of being repeat sequences, which posed challenges for
study in the past. However, with the advent of long-read sequencing technology and improve-
ments in sequencing accuracy, it is now possible to precisely locate transposons and decipher
the structure of the genome [117]. Moreover, the progress in modern genetic tools enables the
mapping of the epigenetic landscape of highly repetitive regions such as centromeres and
telomeres [118,119]. Current strategies also allow for the direct determination of their complete se-
quence and exact length of telomeres [120]. However, numerous questions regarding the relationship
between telomeres and genome stability still await elucidation (see Outstanding questions).
As we surpass these constraints and discover solutions to these questions in the future,
novel insights will be unveiled regarding the role of mammalian telomeres in the maintenance
of genome stability. Telomere shortening and dysfunction represent one of major hallmarks of
aging [121]. Retrotransposon derepression is linked to cell senescence, tumorigenesis, and
aging [78,122,123]. Short telomeres also can promote cell senescence, tumorigenesis, and
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Short telomeres are hallmarks of aging
and tumors. Recently, retrotransposons
and inflammation have been recognized
as important mechanisms in the
processes of aging and tumorigenesis.
Future experiments will seek to
investigate whether and how short
telomeres influence retrotransposons
and inflammation in the context of
aging and cancer.
aging through aberrant activation of retrotransposon-induced genomic instability. Gaining a com-
prehensive understanding of telomere sequences and their relationship with retrotransposon re-
pression and genome stability will significantly contribute to combating diseases and aging.
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