

Review

Genome stability from the perspective of telomere length

Xinyi Lu^{1,*} and Lin Liu ^{1,2,3,4,*}

Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.

Highlights

Telomeres and associated proteins safeguard chromosome ends to preserve genome stability.

Destabilization of telomeres leads to fusion of telomeres and accumulation of DNA damage.

Telomeres and retrotransposons exhibit reciprocal regulation of each other.

Shortest telomeres can cause genome instability by epigenetic activation of retrotransposons.

Telomeres and associated components

Linear chromosomes are grouped in pairs within the nucleus of mammalian cells. To maintain genome stability, the natural ends of linear chromosomes need to be protected from exonucleolytic degradation and fusion events. This protection is carried out by telomeres and associated proteins. Telomeres are repetitive DNA sequences (TTAGGG in vertebrates) that span thousands of nucleotides as double-stranded DNA (dsDNA) and terminate as 130–210-nucleotide, G-rich, single-stranded DNA (ssDNA) [1]. Telomere ssDNA has the ability to invade dsDNA and form distinct telomere structures known as displacement loops (D-loops) and telomere loops (T-loops) [2].

In addition to DNA repeats, functional telomeres consist of multiple proteins. The shelterin complex, comprising Trf1, Trf2, Pot1, Rap1, Tin2, and Tpp1, is responsible for safeguarding telomere DNA [3]. Trf1 and Trf2 directly bind to telomere dsDNA [4–7], while Pot1 recognizes telomere ssDNA and forms a heterodimer with Tpp1 [8–10]. Tin2 interacts with DNA-binding proteins within the complex to stabilize the shelterin structure [11,12], while Rap1 is recruited to telomeres by Trf2 [13]. Another crucial complex for telomere maintenance is the CST (CTC1, STN1, and TEN1) complex [3]. The CST complex competes with Tpp1-Pot1 for binding to telomere ssDNA, obstructing telomerase access to telomere G overhangs. This termination of telomere extension leads to the recruitment of DNA polymerase α primase, which fills the C-strand [14–16]. Various accessory factors are also present at telomeres. Rtel1 disassembles G-quadruplex (G4) structures formed on telomere ssDNA, facilitating DNA replication and removing T-loops to prevent overprocessing of telomeres by the SLX1/4 nuclease complex [17]. Telomeric repeat-containing RNA (Terra), a long noncoding RNA (lncRNA) transcribed from telomeric DNA, forms an R-loop with telomeric DNA and aids in the establishment of heterochromatin at telomeres [18,19].

Telomere length varies across different species, but it is not directly correlated with the lifespan of those species. For example, humans have an average lifespan of 73.2 years and are born with

¹State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China

²Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China

³Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China

⁴Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China

*Correspondence:
luxy@nankai.edu.cn (X. Lu) and
liulin@nankai.edu.cn (L. Liu).

telomeres ranging from 8 to 15 kb, while mice are born with telomeres ranging from 50 to 60 kb but have an average lifespan of about 2 years [20,21]. This difference in lifespan may be attributed to variations in the rate of telomere shortening, as studies have found that the rate of telomere shortening can predict the lifespan of a species [22]. In the absence of maintenance mechanisms, telomeres naturally shorten with each cell division due to internal damage and replication issues that prevent the synthesis of the lagging-strand sequence at the ends of chromosomes during DNA replication [23,24]. When telomeres become too short, cells can enter replicative senescence, a permanent cell cycle arrest, ensuring that short telomeres do not become shorter. When telomeres become excessively damaged or critically short in proliferating cells, they gradually lose their ability to protect chromosomes from end-to-end fusion, leading to genomic instability. Most cells cannot survive such instability. However, if other genetic changes, such as the silencing of tumor suppressor genes or the activation of oncogenes, occur along with genomic instability, the telomere maintenance pathways can be reactivated [25].

Telomere shortening can be counteracted by the enzyme telomerase or through alternative lengthening of telomeres (ALT). Telomerase is composed of several components, including the reverse transcriptase Tert, the template lncRNA *Terc*, and accessory proteins such as Dkc1, Nop10, Tcab1, Nhp2, and Gar1 [26]. Telomerase uses the RNA template to extend the telomeres. In the absence of telomerase, telomeres can also be lengthened through ALT, which relies on homologous recombination-based DNA synthesis at telomeres [27]. The majority of cancers rely on telomerase to extend their telomeres, while approximately 10–15% of cancers use ALT as a means of maintaining telomere length [28,29]. The elongation of telomeres allows cells carrying mutations to continue proliferating and eventually become cancerous.

In view of the important roles of telomeres and associated components, revisiting telomere function will provide further insights into the regulation of genome stability. This review aims to summarize recent findings on the relationship between telomere length and genomic changes.

Role of telomere-associated proteins and RNAs in regulating telomere length and chromosomal stability

Telomere-associated components are intricately involved in maintaining the integrity and functionality of telomeres, as well as ensuring the stability of the chromosomes. Chromosomal fusion and telomere fusion can occur during DNA replication as a result of various factors (Figure 1). The unique structure and heterochromatin nature of telomeres, including G4 and T-loop structures, can hinder the progress of replication forks [30,31]. When replication forks are stalled, they may collapse, leading to the formation of DNA double-strand breaks (DSBs) [32]. There are two primary pathways for repairing DSBs, homology-directed repair (HDR) and nonhomologous end joining (NHEJ). Both NHEJ and HDR can repair DSBs at telomeres, with HDR being an error-free repair mechanism, while NHEJ-mediated repair increases the risk of chromosomal fusion at telomeres [33]. The fusion events caused by dysfunctional telomeres require the assistance of DNA ligases. In the absence of DNA ligase IV (LigIV), the frequency of interchromosomal translocations is greatly reduced [34], indicating the critical role of LigIV-dependent classical nonhomologous end joining (C-NHEJ) in driving interchromosomal telomere fusion. By contrast, alternative nonhomologous end joining (A-NHEJ) is necessary for telomere fusion between intrachromosomal sister chromatids. DNA ligase I (LigI) participates in both inter- and intrachromosomal telomere fusion [35].

In the absence of factors that facilitate the replication of telomeric DNA, telomeres tend to shorten and exhibit an increased propensity for chromatid fusion. For example, the loss of *Rtel1* results in telomere shortening and an elevation in genomic rearrangements [36]. Deletion of *Rtel1* in

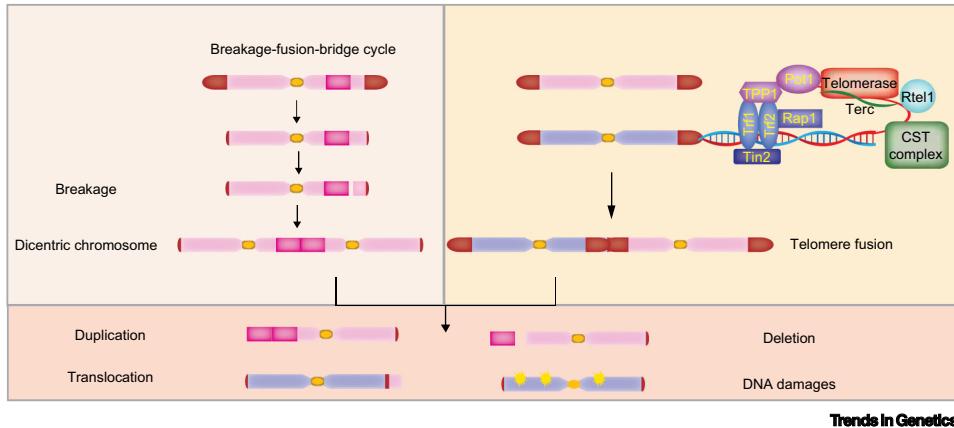


Figure 1. Effect of the breakage–fusion–bridge cycle on genome stability and role of telomere fusion and disruption of telomere proteins on genome instability. As a consequence, the genome becomes unstable, showing translocation, deletion, duplication, and DNA damage.

embryonic stem cells (ESCs) also increases sensitivity to DNA damage without impacting telomere length [37]. Depletion of the G4-processing exonuclease *Exo1* leads to telomere shortening and chromosome fusion. *Terra* also plays a role in facilitating telomere DNA replication [38]. Deletion of *Terra* impairs telomere DNA replication and is associated with decreased telomere length, increased telomere DNA damage, and events of telomere fusion [39,40].

The shelterin complex components *Trf1* and *Trf2* play crucial roles in regulating telomere length and stability. Loss of *Trf1* or *Trf2* leads to distinct phenotypes in terms of telomere fusion and telomere length. *Trf2* deletion in ESCs does not impact telomere length, and knockout of *Trf2* or *Trf1* alone does not induce telomere fusion [41]. However, *Trf2* depletion results in end-to-end chromosome fusions in all other cell types [42,43]. The function of *Trf1* is conserved in both ESCs and somatic cells [44]. Loss of *Trf1* induces telomere replication stress and telomere loss [44]. Deletion of *Trf1* specifically in germ cells also causes chromosome end-to-end fusion [45]. Conversely, overexpression of *Trf1* or *Trf2* leads to progressive telomere shortening. Additionally, *Trf2* overexpression, along with XPF nuclease-dependent telomere shortening, triggers increased chromosomal instability in mouse skin [46]. Overexpression of *TRF1* also results in subtelomere recombination in senescent cells [47].

The shelterin complex components *Pot1a* and *Pot1b* appear to have distinct functions in regulating telomere length and chromosomal stability. Depletion of *Pot1a* in mice elongates telomeres and activates HDR-mediated chromosome fusions [48,49]. By contrast, loss of *Pot1b* or *Tpp1* results in telomere shortening and chromosomal fusion [50]. The shelterin complex component *Tin2* is also implicated in telomere length regulation. *Tin2* mutation causes severe short-telomere syndromes [51,52]. Similarly, *Tin2* depletion elicits unstable chromosomal ends and chromosomal fusions [53]. As an accessory subunit of *Trf2*, *Rap1* loss does not cause mean telomere length shortening but does induce telomere fusion [54].

Chromosomal stability is also regulated by telomere proteins involved in DNA damages. For instance, an important protein complex associated with telomeres, known as the CST complex, plays a dual role in both preserving telomere length and managing DNA damage. The CST complex promotes C-strand fill-in and maintains the length of 3' polyG ssDNA [14–16]. Loss of the key component of the CST complex *CTC1* results in extension of telomere G-overhang and telomeric DNA damage, while the loss of *STN* leads to progressive telomere shortening.

[55]. Apart from its role at telomeres, the CST complex is also involved in genome-wide replication recovery. CTC1 mutation causes telomere loss, reduces CST interaction with RAD51, and disrupts CTC1 binding to GC-rich genomic fragile sites, thereby increasing spontaneous chromosome breakage and chromosome fragmentation under replication stress [56,57]. CST dysfunction can also cause diverse forms of DNA damage [58], indirectly linking telomere length maintenance to DNA damage. These findings highlight the important role of telomere-associated components in regulating telomere length and genome stability.

Impact of telomere length on genome stability

Senescent or cancer cells containing critically short telomeres often exhibit telomere fusion. Intra-sister chromosomal fusion is most commonly observed, while interchromosomal telomere fusion and fusion of telomeres with nontelomeric DNA DSB sites are less frequent [34]. Telomere loss and fusion have been linked to extensive genomic rearrangements [59–61] (Figure 1). Upon chromosome fusion, dicentric chromosomes form, and the fused chromatids create a bridge during anaphase, which breaks when the centromeres move toward opposite poles [62]. Since the breakage sites often do not coincide with the fusion region, one daughter cell carries a chromosome with terminal deletion, which allows another cycle of breakage–fusion–bridge to occur [62]. The other daughter cell carries a chromosome with inverted duplication [62]. As chromothripsis accumulates, DNA replication is accompanied by extensive DNA damage [63]. Consequently, gene amplification and chromosome translocations emerge during cell replication [63]. As a result, cells accumulate subclonal heterogeneity, similar to that found in cancer cells [63].

Telomere length changes with defects in telomere DNA replication, the CST complex, or the shelterin complex. However, the mean telomere length is not directly inversely correlated with chromosomal fusion. Chromosomal fusion can still occur during telomere maintenance/elongation, such as in the case of *Pot1a* or *Trf2* depletion. In instances of telomere shortening, chromosomal fusion is associated with an increased incidence of critically short telomeres resulting from genetic disruption of the shelterin complex. This is consistent with the finding that the shortest telomeres in a cell are responsible for chromosomal instability [64]. Telomere fusions frequently occur in mice lacking telomerase [65]. Our recent study also demonstrates that only cells with critically short telomeres experience an increase in the number of chromosomal fusion events [66]. Cells with short telomeres can still maintain their chromosomal stability. Therefore, it is important to determine whether the number of chromosomes with critically short telomeres increases, in addition to the maintenance or elongation of average telomere length, especially in cases of *Pot1a* or *Trf2* depletion.

Long telomeres may also promote genome stability by exerting control over DNA damage. Notably, mice with hyperlong telomeres accumulate less DNA damage in tissues during aging. By contrast, critical short telomeres induce persistent DNA damage, as well as aging and aging-associated diseases (Figure 1). Cells with critically short telomeres demonstrate a significantly increased amount of DNA damage [66]. This finding is consistent with the observation that DNA repair genes are downregulated only in cells with critically short telomeres but not in wild-type cells or cells with short telomeres [66]. The increased genome-wide DNA damage events are supported by the higher number of single nucleotide variants (SNVs), indels, and single base substitutions (SBSs) in cells with critically short telomeres [66]. Dysfunctional DNA repair ability adds to increased DNA damage and mutations. Another possible source of mutations caused by critically short telomeres is replication stress, which is induced by oncogene overexpression [67]. Replication stress is a major cause of genome instability, as the collapse of DNA replication forks results in the induction of DSBs [32]. Due to the deficiency of NHEJs near telomeres, DSBs are vulnerable to mutations and rearrangements once they occur at

subtelomeric regions [24]. The remaining question is how critically short telomeres suppress the expression of DNA repair genes while activating oncogenes.

Retrotransposons and telomere length

Reciprocal regulation between retrotransposons and telomere length

Retrotransposons, crucial constituents of the genome, play integral roles in genome architecture, stability, and transcriptional regulation [68–70]. Telomere length is initially associated with retrotransposon activity in yeast [71]. Upon inactivation of telomerase, telomere length progressively shortens, accompanied by Ty1 long terminal repeat (LTR)-retrotransposon activation through the telomere checkpoint pathway in yeast [71]. Subsequently, the DNA damage checkpoint is activated, leading to the arrest of yeast cells in G2/M phase [71]. However, those cells that manage to escape cell cycle arrest develop alternative telomere structures, partially repressing the transcriptional activation of Ty1 LTR retrotransposons [71]. The activation of the Ty1 LTR retrotransposon can promote the stabilization of yeast telomeres. The reverse transcriptase of Ty1 utilizes Ty1 cDNA intermediates as primers to reverse transcribe Y' RNA into Ty1 cDNA, which then recombines with subtelomeric Y' elements to maintain telomeres in surviving yeast cells with critically short telomeres [72]. A similar phenomenon is observed in the *Drosophila* genome. The *Drosophila* genome lacks a gene encoding telomerase and canonical telomere repeats. *Drosophila* does not rely on conserved short DNA repeats as telomeres for end protection and instead have domesticated retrotransposons, which are inserted specifically at chromosome ends to protect chromosomes from erosion [73]. In *Bombyx mori* (silkworm), telomeres comprise canonical telomere repeats and retrotransposons. These findings suggest reciprocal regulation between retrotransposons and telomere length.

An analogous regulatory strategy has also been observed in mammalian cells. Loss of telomerase in a variety of mouse cells and tissues leads to shortened telomeres and concurrent activation of retrotransposons [66]. Upon passaging, telomeres become critically short, which is associated with extensive activation of retrotransposons, including LINE1s, IAPs, and MERVL [66]. These activated retrotransposons are enriched at subtelomeric regions [66]. The activation of retrotransposons can be attributed to the decrease in the heterochromatin mark H3K9me3 and increased chromatin accessibility [66], since retrotransposons are known to be silenced by H3K9me3-marked heterochromatin in both human and mouse cells [68,69,74].

Aging cells with shorter telomeres demonstrate reduced H3K9me3 levels (Figure 2) [75]. Consistently, premature aged cells from Werner syndrome patients also display shorter telomeres and reduced H3K9me3 levels [76]. Similarly, Hutchinson–Gilford progeria syndrome (HGPS) cells demonstrated accelerated telomere erosion and a reduction in H3K9me3 [77]. As telomeres shorten and H3K9me3 decreases, retrotransposons such as LINE1 and HERVK become activated in both aging cells and premature aged cells (Figure 2) [78–81]. Proteins involved in establishing H3K9me3 and maintaining telomeres also contribute to the suppression of retrotransposons (Figure 2). For instance, the Daxx and Atrx complex safeguards the genome by silencing repetitive elements, including telomeres and retrotransposons, through Suv39h recruitment and H3K9me3 [82]. Hdac5, which facilitates H3K9me3 deposition and telomere maintenance, also has the ability to repress retrotransposons [83]. Several other proteins indirectly participate in regulating telomere length and H3K9me3 deposition on retrotransposons, such as CLOCK, SIRT7, and DGCR8. Interestingly, CLOCK, SIRT7, and DGCR8 are downregulated in senescent cells, which often have shorter telomeres [79–81]. CLOCK regulates telomeres by controlling the expression of Tert mRNA while simultaneously repressing LINE1 through H3K9me3 [81,84]. SIRT7 promotes the expression of TR4, which is involved in the ALT process [85,86]. SIRT7 represses LINE1 and counteracts cellular aging [80,87]. DGCR8 controls the

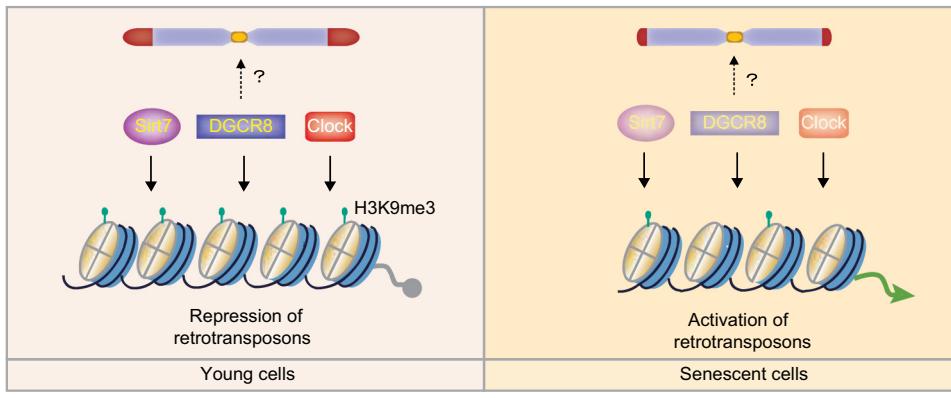
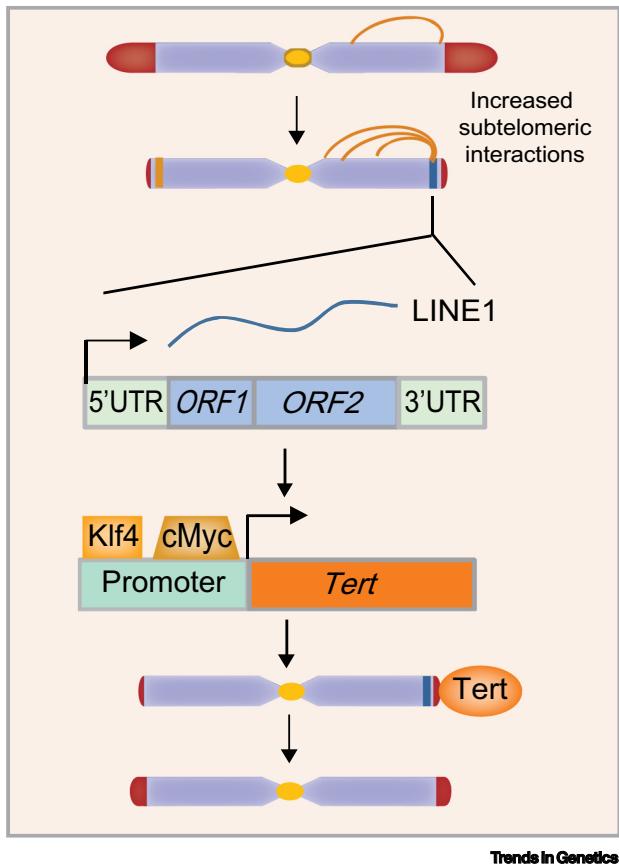



Figure 2. Regulation of telomere length and retrotransposons by H3K9me3-marked heterochromatin in young and senescent cells. In young cells, retrotransposons are repressed by H3K9me3-marked heterochromatin. In senescent cells, retrotransposons are activated upon reduced expression of Sirt7, DGCR8, and CLOCK. It remains to be determined whether Sirt7, DGCR8, and CLOCK contribute to telomere maintenance and telomeric heterochromatin in senescent and young cells. Broken arrow represents uncertain regulation.

stability of human telomerase RNA and is essential for maintaining H3K9me3-marked heterochromatin, including LINE1 loci [79,88]. Considering that telomeres are also part of H3K9me3-marked heterochromatin, it would be intriguing to investigate whether CLOCK, SIRT7, or DGCR8 directly regulate telomere length and stability in young and senescent cells. These findings highlight the intricate interconnection between telomeres, H3K9me3, and the restriction of retrotransposons.

As an important part of heterochromatin, telomere length not only affects the number of telomeric H3 histones but also regulates telomeric H3K9me3 frequency [89]. Short telomeres tend to have a lower H3K9me3 density per H3 compared with longer telomeres [89]. This may further contribute to chromatin openness at telomeric regions and affect retrotransposon expression at subtelomere regions through telomere position effects. In this mechanism, subtelomeric genes are repressed by telomeric heterochromatin, while telomere shortening leads to the activation of subtelomeric genes [90]. Additionally, distant retrotransposons may also be influenced by telomeres through long-distance looping, which becomes more pronounced in the absence of functional telomeres [66]. Reintroduction of telomerase represses activated retrotransposons, highlighting the critical role of telomere length in restricting retrotransposon expression in mammals [66]. ESCs with critically short telomeres exhibit increased chromatin interactions at subtelomeric regions, which is associated with enhanced transcription [66]. The activation of MERV in ESCs with critically short telomeres can be explained by the upregulation of genes located at subtelomeres, such as *Zscan4*, which is known to promote MERV expression [91].

In certain instances, retrotransposon activation may facilitate telomere elongation (Figure 3). In early mouse blastocysts, the expression activation of the non-LTR retrotransposon LINE1 coincides with telomere extension [92]. In agreement, a decrease in relative telomere length and LINE1 repression by methylation has been observed in patients with autism [93]. However, unlike yeast and silkworm, retrotransposons in mammals do not directly elongate telomeres through insertion. Instead, LINE1 activates the expression of cMyc and Kif4, which in turn trigger *Tert* transcription [94]. Inhibition of LINE1 reverse transcriptase with azidothymidine (AZT) impedes telomere elongation and the expression of two-cell genes in mouse early embryos [95]. AZT also inhibits telomere elongation and increases LINE1 copy number in early mouse

Figure 3. Inter-regulation between telomere length and retrotransposons in mammalian cells. Critically short telomeres activate subtelomeric LINE1, which promotes the expression of Klf4 and cMyc, subsequently activating the expression of Tert, which is responsible for extending telomere length. Abbreviation: UTR, untranslated region.

embryos [96]. It is worth noting that telomerase in nature is a reverse transcriptase, and AZT has been used as a telomerase inhibitor [97]. Thus, using AZT as a LINE1 reverse transcriptase inhibitor may inhibit telomerase. The development of more specific inhibitors targeting LINE1 reverse transcriptase will allow for a specific investigation of the role of LINE1 in telomere length regulation.

Impact of retrotransposons on genome stability

Both telomeres and retrotransposons are repetitive elements that are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition and is therefore indispensable for genomic stability [98]. Activation of retrotransposons due to critically short telomeres can induce genome instability in mammals through various routes (Figure 4).

Evolutionarily young members of the ERVK family, endogenous retroviruses, display strong retrotransposition potential [99]. In laboratory mice, approximately 10% of germline mutations are caused by IAPs and ETn; both of which belong to the ERVK family [100]. Additionally, IAPs, MMETn, and MTA can retrotranspose to other genomic locations when activated in response to telomere shortening [66]. Somatic insertions of IAPs or MMETn have been linked to changes in splicing sites and gene expression [101]. However, HERVK lacks the ability to retrotranspose, despite detectable HERVK insertional polymorphisms within the human population [102]. These findings imply that HERVs may contribute to homologous recombination, which can result in

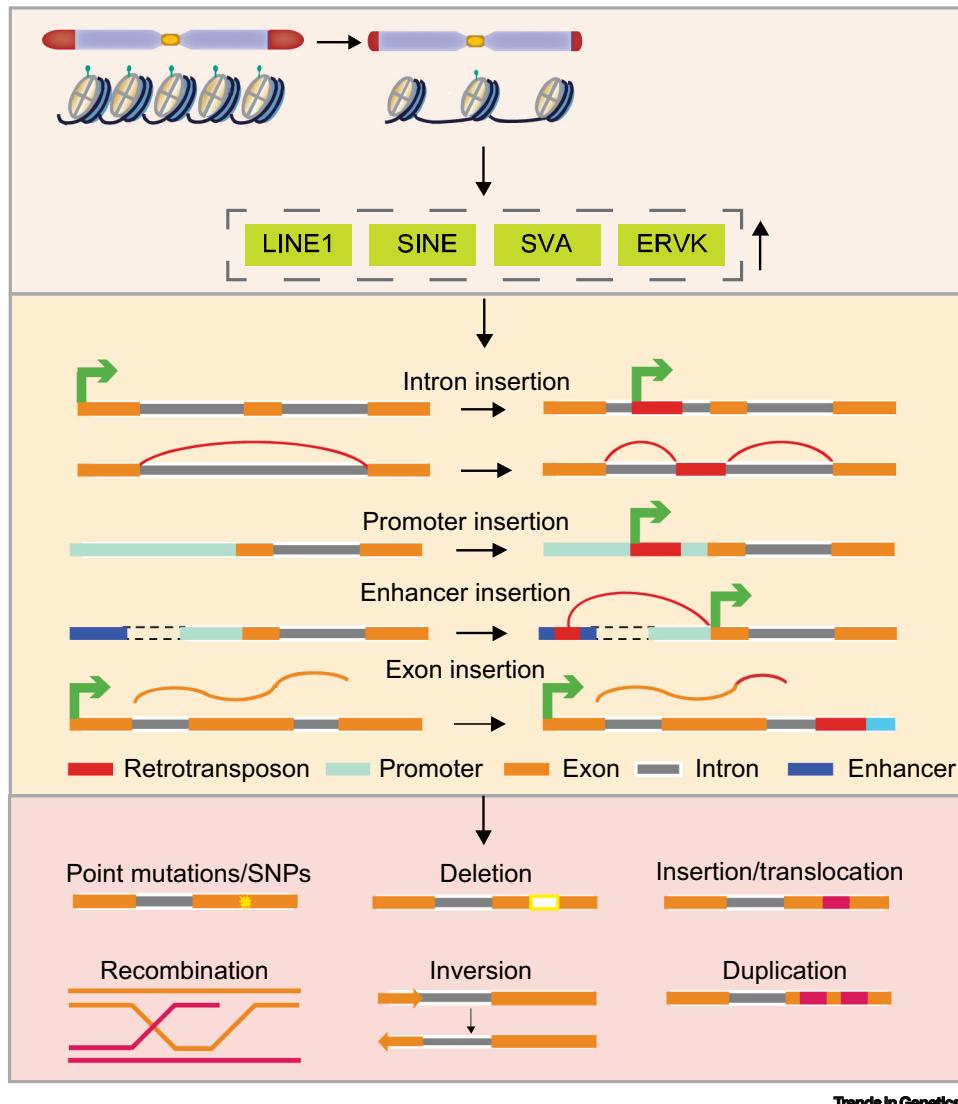


Figure 4. Activation of retrotransposons upon telomere shortening destabilizes the host genome by insertion into various genomic loci. Telomere shortening leads to chromatin openness and subsequent activation of retrotransposons such as LINE1. Retrotransposons such as LINE1 may serve as an alternative promoter (intron insertion), a donor of a splicing site (intron insertion), an alternative enhancer (enhancer insertion), or an exon (exon insertion). As a result of retrotransposon activation, point mutations/SNPs, deletion, insertion/translocation, recombination, inversion, and duplication may occur.

chromosomal rearrangements. In addition, HERVK may affect genome stability indirectly by assembling into virus-like particles and spreading to other cells while inducing cellular senescence [78]. The HERVK encoded env protein can promote cellular proliferation and oncogenesis by interacting with various oncoproteins [103]. HERVW derived proteins can mediate cell fusion, thereby eventually causing polyploidy or aneuploidy [104]. The aforementioned findings highlight an important role of ERVs in regulating genome stability.

When LINE1 is activated upon telomere shortening, it may express the nucleic acid chaperone ORF1, along with ORF2P, which possesses endonuclease and reverse transcriptase activities.

LINE1, SVA, and SINE elements exhibit retrotransposition capabilities both in embryonic stem cells with critically short telomeres and in somatic cells [66,105–107]. LINE1 elements harboring disabled endonucleases can exploit dysfunctional telomeres as integration sites [108]. When retrotransposons insert themselves near genes, they have the potential to disrupt gene expression, including the induction of oncogene expression, such as Ostf1 and Ret [66]. If the insertion occurs within the coding region of a gene, it can cause frameshift mutations and premature termination, resulting in the loss of gene function. Retrotransposon insertions within introns can induce alternative splicing of genes [109,110]. Retrotransposons can also contribute to structural variations [111] and impact neighboring chromatin environments by attracting epigenetic modifiers [112].

In addition to retrotransposition-induced genome instability, LINE1 can induce genome instability by encoding endonucleases. During LINE1 insertion, the LINE1 endonuclease can recognize genomic DNA and generate DSBs [113]. Consequently, cells overexpressing LINE1 exhibit increased DNA damage and G2/M cell cycle arrest [113]. Additionally, DSBs near retrotransposons may facilitate invasion of the 3' end of the broken DNA strand into the template strand of a non-allelic homologous retrotransposon [114]. This leads to the joining of the synthesized strand carrying retrotransposons with the other strand via NHEJ, resulting in the insertion of part of the retrotransposon at the DSB site [114]. Another mechanism by which retrotransposons can induce genome instability is through TE-mediated nonallelic homologous recombination (NAHR). Retrotransposons, such as Alu, can provide nonallelic homology to the invading strand for annealing [115]. As a result of NAHR, genomic deletion, duplication, or inversion can occur [116]. These studies also explain the observed mutations and genomic rearrangements at nonsubtelomeric regions in cells with critically short telomeres [66].

Mice have long telomeres, such that several generations of telomere shortening without telomerase are able to reach the shortest telomeres [64]. The shortest telomeres, not the average telomere length, lead to cell senescence [64]. Human telomeres are shorter than mouse telomeres [20,21]. The fact that the shortest telomeres in the mouse ESC model cause genetic instability via retrotransposons could also occur in humans, but further experiments are needed to validate this notion.

Concluding remarks

Our understanding of the role of telomeres in regulating genome stability has significantly advanced in recent years due to the development of genomic technologies. These studies have unveiled new routes through which telomeres regulate genome stability. Retrotransposons have emerged as crucial partners of telomeres in maintaining genome stability. Telomeres and transposons share the characteristic of being repeat sequences, which posed challenges for study in the past. However, with the advent of long-read sequencing technology and improvements in sequencing accuracy, it is now possible to precisely locate transposons and decipher the structure of the genome [117]. Moreover, the progress in modern genetic tools enables the mapping of the epigenetic landscape of highly repetitive regions such as centromeres and telomeres [118,119]. Current strategies also allow for the direct determination of their complete sequence and exact length of telomeres [120]. However, numerous questions regarding the relationship between telomeres and genome stability still await elucidation (see *Outstanding questions*). As we surpass these constraints and discover solutions to these questions in the future, novel insights will be unveiled regarding the role of mammalian telomeres in the maintenance of genome stability. Telomere shortening and dysfunction represent one of major hallmarks of aging [121]. Retrotransposon derepression is linked to cell senescence, tumorigenesis, and aging [78,122,123]. Short telomeres also can promote cell senescence, tumorigenesis, and

Outstanding questions

It remains to be explored whether the shortest telomeres regulate retrotransposons to influence genome stability in human senescent cells and cancer cells.

Human cells generally have shorter telomeres than mouse cells. It will be interesting to check whether human cells are more sensitive to telomere attrition-induced retrotransposon activation and genomic instability.

Different retrotransposons can respond differently to various telomere lengths, and the underlying mechanism remains to be determined.

Do the shortest telomeres derepress retrotransposons through DNA damage signals, in addition to heterochromatic regulation?

The shortest or dysfunctional telomeres have been known to induce DNA damage signaling at the telomere. It is unclear how the shortest telomeres also impair the DNA repair pathways found in the study [66].

Retrotransposon activation is accompanied by compromised DNA damage repair pathways and activated cancer-related pathways following telomere attrition. It remains to be understood whether and how retrotransposons influence the DNA damage repair and cancer pathways.

Further experiments are needed to understand how telomere length regulates 3D chromatin structure, chromatic accessibility, epigenetics, and transcription and their association with genome stability.

It will be interesting to identify the factors that govern the length and rate of telomere shortening in various species.

The mechanism by which the epigenetic state of telomeres is intricately linked to the maintenance of genome stability remains to be discovered.

Telomeric variant sequences exist within telomeres. Their roles in regulating telomere structure and ensuring genome stability are still to be unveiled.

aging through aberrant activation of retrotransposon-induced genomic instability. Gaining a comprehensive understanding of telomere sequences and their relationship with retrotransposon repression and genome stability will significantly contribute to combating diseases and aging.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2022YFA1103800; 2018YFA0107000) and the National Natural Science Foundation of China (32070858 to X.L.; 32030033, 82230052, 31970667 to L.L.).

Declaration of interests

The authors declare no conflicts of interest.

References

- Makarov, V.L. *et al.* (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. *Cell* 88, 657–666
- Griffith, J.D. *et al.* (1999) Mammalian telomeres end in a large duplex loop. *Cell* 97, 503–514
- Lim, C.J. and Cech, T.R. (2021) Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. *Nat. Rev. Mol. Cell Biol.* 22, 283–298
- van Steensel, B. and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1. *Nature* 385, 740–743
- Broccoli, D. *et al.* (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. *Nat. Genet.* 17, 231–235
- Bilaud, T. *et al.* (1997) Telomeric localization of TRF2, a novel human telobox protein. *Nat. Genet.* 17, 236–239
- Bianchi, A. *et al.* (1997) TRF1 is a dimer and bends telomeric DNA. *EMBO J.* 16, 1785–1794
- Lei, M. *et al.* (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. *Nat. Struct. Mol. Biol.* 11, 1223–1229
- Loayza, D. and De Lange, T. (2003) POT1 as a terminal transducer of TRF1 telomere length control. *Nature* 423, 1013–1018
- Baumann, P. and Cech, T.R. (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. *Science* 292, 1171–1175
- Liu, D. *et al.* (2004) Telsome, a mammalian telomere-associated complex formed by multiple telomeric proteins. *J. Biol. Chem.* 279, 51338–51342
- O'Connor, M.S. *et al.* (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. *Proc. Natl. Acad. Sci. U. S. A.* 103, 11874–11879
- Rai, R. *et al.* (2016) TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. *Nat. Commun.* 7, 10881
- Miyake, Y. *et al.* (2009) RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. *Mol. Cell* 36, 193–206
- Surovtseva, Y.V. *et al.* (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. *Mol. Cell* 36, 207–218
- Chen, L.Y. *et al.* (2012) The human CST complex is a terminator of telomerase activity. *Nature* 488, 540–544
- Vanner, J.B. *et al.* (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. *Cell* 149, 795–806
- Feretzaki, M. *et al.* (2020) RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. *Nature* 587, 303–308
- Deng, Z. *et al.* (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. *Mol. Cell* 35, 403–413
- Okuda, K. *et al.* (2002) Telomere length in the newborn. *Pediatr. Res.* 52, 377–381
- Zijlmans, J.M. *et al.* (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. *Proc. Natl. Acad. Sci. U. S. A.* 94, 7423–7428
- Whittemore, K. *et al.* (2019) Telomere shortening rate predicts species life span. *Proc. Natl. Acad. Sci. U. S. A.* 116, 15122–15127
- Levy, M.Z. *et al.* (1992) Telomere end-replication problem and cell aging. *J. Mol. Biol.* 225, 951–960
- Fumagalli, M. *et al.* (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. *Nat. Cell Biol.* 14, 355–365
- Maciejowski, J. and de Lange, T. (2017) Telomeres in cancer: tumour suppression and genome instability. *Nat. Rev. Mol. Cell Biol.* 18, 175–186
- Shay, J.W. and Wright, W.E. (2019) Telomeres and telomerase: three decades of progress. *Nat. Rev. Genet.* 20, 299–309
- Silva, B. *et al.* (2022) The alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restricted. *Proc. Natl. Acad. Sci. U. S. A.* 119, e2208669119
- Bryan, T.M. *et al.* (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. *Nat. Med.* 3, 1271–1274
- Shay, J.W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. *Eur. J. Cancer* 33, 787–791
- Sarek, G. *et al.* (2019) CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. *Nature* 575, 523–527
- Zhang, M. *et al.* (2019) Mammalian CST averts replication failure by preventing G-quadruplex accumulation. *Nucleic Acids Res.* 47, 5243–5259
- Hanada, K. *et al.* (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. *Nat. Struct. Mol. Biol.* 14, 1096–1104
- Smogorzewska, A. *et al.* (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. *Curr. Biol.* 12, 1635–1644
- Liddiard, K. *et al.* (2016) Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. *Genome Res.* 26, 588–600
- Singh, D.K. *et al.* (2014) Human DNA ligases: a comprehensive new look for cancer therapy. *Med. Res. Rev.* 34, 567–595
- Leon-Ortiz, A.M. *et al.* (2018) A distinct class of genome rearrangements driven by heterologous recombination. *Mol. Cell* 69, 292–305 e296
- Uringa, E.J. *et al.* (2012) RTEL1 contributes to DNA replication and repair and telomere maintenance. *Mol. Biol. Cell* 23, 2782–2792
- Beishline, K. *et al.* (2017) CTCF driven TERRA transcription facilitates completion of telomere DNA replication. *Nat. Commun.* 8, 2114
- Silva, B. *et al.* (2021) TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. *Nat. Commun.* 12, 3760
- Balk, B. *et al.* (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. *Nat. Struct. Mol. Biol.* 20, 1199–1205
- Markiewicz-Potoczny, M. *et al.* (2021) TRF2-mediated telomere protection is dispensable in pluripotent stem cells. *Nature* 589, 110–115

Short telomeres are hallmarks of aging and tumors. Recently, retrotransposons and inflammation have been recognized as important mechanisms in the processes of aging and tumorigenesis. Future experiments will seek to investigate whether and how short telomeres influence retrotransposons and inflammation in the context of aging and cancer.

42. Denchi, E.L. and de Lange, T. (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. *Nature* 448, 1068–1071
43. Capper, R. *et al.* (2007) The nature of telomere fusion and a definition of the critical telomere length in human cells. *Genes Dev.* 21, 2495–2508
44. Ruis, P. *et al.* (2021) TRF2-independent chromosome end protection during pluripotency. *Nature* 589, 103–109
45. Wang, L. *et al.* (2018) Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. *Cell Death Differ.* 25, 1174–1188
46. Munoz, P. *et al.* (2005) XPF nuclelease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. *Nat. Genet.* 37, 1063–1071
47. Azarm, K. *et al.* (2020) Persistent telomere cohesion protects aged cells from premature senescence. *Nat. Commun.* 11, 3321
48. Kendellen, M.F. *et al.* (2009) POT1 association with TRF2 regulates telomere length. *Mol. Cell. Biol.* 29, 5611–5619
49. Gu, P. *et al.* (2021) Distinct functions of POT1 proteins contribute to the regulation of telomerase recruitment to telomeres. *Nat. Commun.* 12, 5514
50. Takai, K.K. *et al.* (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. *Mol. Cell* 44, 647–659
51. Walne, A.J. *et al.* (2008) TIN2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. *Blood* 112, 3594–3600
52. Savage, S.A. *et al.* (2008) TIN2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. *Am. J. Hum. Genet.* 82, 501–509
53. Yin, S. *et al.* (2022) TIN2 deficiency leads to ALT-associated phenotypes and differentiation defects in embryonic stem cells. *Stem Cell Reports* 17, 1183–1197
54. Lototska, L. *et al.* (2020) Human RAP1 specifically protects telomeres of senescent cells from DNA damage. *EMBO Rep.* 21, e49076
55. Feng, X. *et al.* (2018) CTC1-STN1 terminates telomerase while STN1-TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. *Nat. Commun.* 9, 2827
56. Wang, Y. and Chai, W. (2018) Pathogenic CTC1 mutations cause global genome instabilities under replication stress. *Nucleic Acids Res.* 46, 3981–3992
57. Gu, P. *et al.* (2012) CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. *EMBO J.* 31, 2309–2321
58. Wang, F. *et al.* (2014) Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. *Cell Cycle* 13, 3488–3498
59. Lieber, M.R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. *Annu. Rev. Biochem.* 79, 181–211
60. Meeker, A.K. *et al.* (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. *Clin. Cancer Res.* 10, 3317–3326
61. Roger, L. *et al.* (2013) Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. *J. Natl. Cancer Inst.* 105, 1202–1211
62. Guerin, T.M. and Marcand, S. (2022) Breakage in breakage-fusion-bridge cycle: an 80-year-old mystery. *Trends Genet.* 38, 641–645
63. Umbreit, N.T. *et al.* (2020) Mechanisms generating cancer genome complexity from a single cell division error. *Science* 368, 6488
64. Hemann, M.T. *et al.* (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. *Cell* 107, 67–77
65. Maser, R.S. *et al.* (2007) DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. *Mol. Cell. Biol.* 27, 2253–2265
66. Zhao, N. *et al.* (2023) Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. *Cell Discov.* 9, 45
67. Murnane, J.P. (2010) Telomere loss as a mechanism for chromosome instability in human cancer. *Cancer Res.* 70, 4255–4259
68. Wang, J. *et al.* (2023) Endogenous retroviruses in development and health. *Trends Microbiol.* Published online October 4, 2023. <https://doi.org/10.1016/tim.2023.09.006>
69. Lu, X. (2023) Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. *J. Mol. Cell Biol.* Published online August 21, 2023. <https://doi.org/10.1093/jmcb/mjad052>
70. Faulkner, G.J. and Garcia-Perez, J.L. (2017) L1 Mosaicism in Mammals: Extent, Effects, and Evolution. *Trends Genet.* 33, 802–816
71. Scholes, D.T. *et al.* (2003) Activation of a LTR-retrotransposon by telomere erosion. *Proc. Natl. Acad. Sci. U. S. A.* 100, 15736–15741
72. Maxwell, P.H. *et al.* (2004) Ty1 mobilizes subtelomeric Y' elements in telomerase-negative *Saccharomyces cerevisiae* survivors. *Mol. Cell. Biol.* 24, 9887–9898
73. Cheng, L. *et al.* (2018) MTV sings jubilation for telomere biology in *Drosophila*. *Fly* 12, 41–45
74. Paddeken, J. *et al.* (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. *Nat. Rev. Mol. Cell Biol.* 23, 623–640
75. Cai, Y.S. *et al.* (2022) The landscape of aging. *Sci. China Life Sci.* 65, 2354–2454
76. Zhang, W.Q. *et al.* (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. *Science* 348, 1160–1168
77. Li, Y.H. *et al.* (2019) Transient introduction of human telomerase mRNA improves hallmarks of progeria cells. *Aging Cell* 18, e12979
78. Liu, X.Q. *et al.* (2023) Resurrection of endogenous retroviruses during aging reinforces senescence. *Cell* 186, 287–304
79. Deng, L.P. *et al.* (2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. *Nat. Commun.* 10, 3329
80. Bi, S.J. *et al.* (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. *Protein Cell* 11, 483–504
81. Liang, C.Q. *et al.* (2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. *Cell Res.* 31, 187–205
82. He, Q.Y. *et al.* (2015) The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. *Cell Stem Cell* 17, 273–286
83. Zhao, X. *et al.* (2022) PIM3-AMPK-HDAC4/5 axis restricts MuERVL-marked 2-cell-like state in embryonic stem cells. *Stem Cell Reports* 17, 2256–2271
84. Chen, W.D. *et al.* (2014) The circadian rhythm controls telomeres and telomerase activity. *Biochem. Biophys. Res. Commun.* 451, 408–414
85. Conomos, D. *et al.* (2012) Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. *J. Cell Biol.* 199, 893–906
86. Yoshizawa, T. *et al.* (2014) SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. *Cell Metab.* 19, 712–721
87. Vazquez, B.N. *et al.* (2019) SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. *Nucleic Acids Res.* 47, 7870–7885
88. Macias, S. *et al.* (2015) DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs. *Mol. Cell* 60, 873–885
89. Arnoult, N. *et al.* (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1a. *Nat. Struct. Mol. Biol.* 19, 948–956
90. Robin, J.D. *et al.* (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. *Gene Dev.* 28, 2464–2476
91. Zhang, W. *et al.* (2019) Zscan4c activates endogenous retrovirus MERV and cleavage embryo genes. *Nucleic Acids Res.* 47, 8485–8501
92. Bertelli, T.S. *et al.* (2022) Impact of superovulation and *in vitro* fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts. *Mol. Biol. Rep.* 49, 4909–4917
93. Salem, S. and Ashaft, E. (2023) Association of relative telomere length and LINE-1 methylation with autism but not with severity. *J. Autism Dev. Disord.* Published online April 4, 2023. <https://doi.org/10.1007/s10803-023-05965-0>

94. Aschacher, T. *et al.* (2016) LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. *Oncogene* 35, 94–104
95. Wang, F. *et al.* (2021) Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. *J. Assist. Reprod. Genet.* 38, 3145–3153
96. Navarro, P.A. *et al.* (2021) Zidovudine inhibits telomere elongation, increases the transposable element LINE-1 copy number and compromises mouse embryo development. *Mol. Biol. Rep.* 48, 7767–7773
97. Gomez, D.E. *et al.* (2012) AZT as a telomerase inhibitor. *Front. Oncol.* 2, 113
98. Bierhoff, H. *et al.* (2014) Noisy silence non-coding RNA and heterochromatin formation at repetitive elements. *Epigenetics* 9, 53–61
99. Monde, K. *et al.* (2022) Movements of ancient human endogenous retroviruses detected in SOX2-expressing cells. *J. Virol.* 96, e0035622
100. Nellåker, C. *et al.* (2012) The genomic landscape shaped by selection on transposable elements across 18 mouse strains. *Genome Biol.* 13, R45
101. Gagnier, L. *et al.* (2019) Mouse germ line mutations due to retrotransposon insertions. *Mob. DNA* 10, 15
102. Jansz, N. and Faulkner, G.J. (2021) Endogenous retroviruses in the origins and treatment of cancer. *Genome Biol.* 22, 147
103. García-Montojo, M. *et al.* (2018) Human endogenous retrovirus-K (HML-2): a comprehensive review. *Crit. Rev. Microbiol.* 44, 715–738
104. Grandi, N. and Tramontano, E. (2018) HERV envelope proteins: physiological role and pathogenic potential in cancer and autoimmunity. *Front. Microbiol.* 9, 462
105. Nam, C.H. *et al.* (2023) Widespread somatic L1 retrotransposition in normal colorectal epithelium. *Nature* 617, 540–547
106. Ewing, A.D. *et al.* (2015) Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. *Genome Res.* 25, 1536–1545
107. Hanks, D.C. and Kazazian, H.H. (2010) SVA retrotransposons: evolution and genetic instability. *Semin. Cancer Biol.* 20, 234–245
108. Morish, T.A. *et al.* (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. *Nature* 446, 208–212
109. Belancio, V.P. *et al.* (2006) LINE-1 RNA splicing and influences on mammalian gene expression. *Nucleic Acids Res.* 34, 1512–1521
110. Lev-Maor, G. *et al.* (2008) Intronic AluS influence alternative splicing. *PLoS Genet.* 4, e1000204
111. Ferraj, A. *et al.* (2023) Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. *Cell Genom.* 3, 100291
112. Zhou, W. *et al.* (2020) DNA methylation enables transposable element-driven genome expansion. *Proc. Natl. Acad. Sci. U. S. A.* 117, 19359–19366
113. Gasior, S.L. *et al.* (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. *J. Mol. Biol.* 357, 1383–1393
114. Couedel, C. *et al.* (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. *Genes Dev.* 18, 1293–1304
115. Sen, S.K. *et al.* (2006) Human genomic deletions mediated by recombination between Alu elements. *Am. J. Hum. Genet.* 79, 41–53
116. Han, K. *et al.* (2008) L1 recombination-associated deletions generate human genomic variation. *Proc. Natl. Acad. Sci. U. S. A.* 105, 19366–19371
117. Vollger, M.R. *et al.* (2022) Segmental duplications and their variation in a complete human genome. *Science* 376, eabj6965
118. Hoyt, S.J. *et al.* (2022) From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. *Science* 376, eabk3112
119. Altemose, N. *et al.* (2022) Complete genomic and epigenetic maps of human centromeres. *Science* 376, eabj4178
120. Tham, C.Y. *et al.* (2023) High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. *Nat. Commun.* 14, 281
121. Chakravarti, D. *et al.* (2021) Telomeres: history, health, and hallmarks of aging. *Cell* 184, 306–322
122. De Cecco, M. *et al.* (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. *Nature* 566, 73–78
123. Gorbunova, V. *et al.* (2021) The role of retrotransposable elements in ageing and age-associated diseases. *Nature* 596, 43–53